Skip to main content
Log in

On the approximability of adjustable robust convex optimization under uncertainty

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we consider adjustable robust versions of convex optimization problems with uncertain constraints and objectives and show that under fairly general assumptions, a static robust solution provides a good approximation for these adjustable robust problems. An adjustable robust optimization problem is usually intractable since it requires to compute a solution for all possible realizations of uncertain parameters, while an optimal static solution can be computed efficiently in most cases if the corresponding deterministic problem is tractable. The performance of the optimal static robust solution is related to a fundamental geometric property, namely, the symmetry of the uncertainty set. Our work allows for the constraint and objective function coefficients to be uncertain and for the constraints and objective functions to be convex, thereby providing significant extensions of the results in Bertsimas and Goyal (Math Oper Res 35:284–305, 2010) and Bertsimas et al. (Math Oper Res 36: 24–54, 2011b) where only linear objective and linear constraints were considered. The models in this paper encompass a wide variety of problems in revenue management, resource allocation under uncertainty, scheduling problems with uncertain processing times, semidefinite optimization among many others. To the best of our knowledge, these are the first approximation bounds for adjustable robust convex optimization problems in such generality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beale EML (1955) On minizing a convex function subject to linear inequalities. J R Stat Soc Ser B (Method) 17(2): 173–184

    MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University press, Princeton

    MATH  Google Scholar 

  • Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Program 99(2): 351–376

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4): 769–805

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25(1): 1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2002) Robust optimization–methodology and applications. Math Program 92(3): 453–480

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Goyal V (2010) On the power of robust solutions in two-stage stochastic and adaptive optimization problems. Math Oper Res 35: 284–305

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011a) Theory applications of robust optimization. SIAM Rev 53: 464–501

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Goyal V, Sun A (2011b) A geometric characterization of the power of finite adaptability in multi-stage stochastic and adaptive optimization. Math Oper Res 36: 24–54

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program Ser B 98: 49–71

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(2): 35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig GB (1955) Linear programming under uncertainty. Manag Sci 1: 197–206

    Article  MathSciNet  MATH  Google Scholar 

  • Dyer M, Stougie L (2006) Computational complexity of stochastic programming problems. Math Program 106(3): 423–432

    Article  MathSciNet  MATH  Google Scholar 

  • El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J Matrix Anal Appl 18: 1035–1064

    Article  MathSciNet  MATH  Google Scholar 

  • Feige U, Jain K, Mahdian M, Mirrokni V (2007) Robust combinatorial optimization with exponential scenarios. Lect Notes Comput Sci 4513: 439–453

    Article  MathSciNet  Google Scholar 

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1): 1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2): 169–197

    Article  MathSciNet  MATH  Google Scholar 

  • Infanger G (1994) Planning under uncertainty: solving large-scale stochastic linear programs. Boyd & Fraser Pub Co, Danvers

    MATH  Google Scholar 

  • Kall P, Wallace SW (1994) Stochastic programming. Wiley , New York

    MATH  Google Scholar 

  • Minkowski H (1911) Allegemeine Lehrsätze über konvexen Polyeder. Ges. Ahb. 2: 103–121

    Google Scholar 

  • Prékopa A (1995) Stochastic programming. Kluwer, Dordrecht, Boston

    Book  Google Scholar 

  • Shapiro A (2008) Stochastic programming approach to optimization under uncertainty. Math Program Ser B 112(1): 183–220

    Article  MATH  Google Scholar 

  • Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. Soc Ind Appl Math 9

  • Shapiro A, Nemirovski A (2005) On complexity of stochastic programming problems. In: Jeyakumar V, Rubinov AM (eds) Continuous optimization: current trends and applications. Springer, pp 111–146

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Goyal.

Additional information

V. Goyal is supported by NSF Grant CMMI-1201116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsimas, D., Goyal, V. On the approximability of adjustable robust convex optimization under uncertainty. Math Meth Oper Res 77, 323–343 (2013). https://doi.org/10.1007/s00186-012-0405-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-012-0405-6

Keywords

Navigation