Skip to main content
Log in

Determining cutoff values of prognostic factors in survival data with competing risks

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In clinical studies, patients are often classified into high or low risk groups based on prognostic factors related to survival outcomes. Using maximally selected linear rank statistics, several methods have been developed to determine a cutoff value of the prognostic factor. We propose an extension of these methods for the circumstances that competing risks are encountered in conjunction with an event outcome of interest. A simulation study is carried out to demonstrate the performance of the proposed method using some commonly used measures such as bias, precision, and power. We also apply our method to two real datasets involving lung cancer and hepatocellular carcinoma, illustrating optimal determinations of cutoff values for binary decisions on prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Contal C, O’Quigley J (1999) An application of change point methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal 30:253–270

    Article  MATH  Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62:269–276

    Article  MathSciNet  MATH  Google Scholar 

  • Gray RJ (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 16:1141–1154

    Article  MathSciNet  MATH  Google Scholar 

  • Hothorn T, Zeileis A (2008) Generalized maximally selected statistics. Biometrics 64:1263–1269

    Article  MathSciNet  MATH  Google Scholar 

  • Hrick DE, Schulak JA (1998) Steroid withdrawal from cyclosporine-based regimens: con—a flawed strategy. Transplant Proc 30:1785–1787

    Article  Google Scholar 

  • Jespersen NCB (1986) Dichotomizing a continuous covariate in the Cox regression model. Research Report 86/2. Statistical Research Unit, University of Copenhagen

  • Kalbfleish JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MathSciNet  MATH  Google Scholar 

  • Kim SW, Park CK (2002) Categorizing tumor size as a prognostic factor for risk of relapse of hepatocellular carcinoma. Korean J Appl Stat 15:1–8

    Article  MathSciNet  Google Scholar 

  • Klein JP, Moeschberger ML (2002) Survival Analysis: Techniques for Censored and Truncated Data, 2nd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  • Kotz J (1972) Continuous multivariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Lausen B, Schumacher M (1992) Maximally selected rank statistics. Biometrics 48:73–85

    Article  Google Scholar 

  • Lausen B, Schumacher M (1996) Evaluating the effect of optimized cutoff values in the assessment of prognostic factors. Comput Stat Data Anal 21:307–326

    Article  MATH  Google Scholar 

  • Miller R, Siegmund D (1982) Maximally selected chi-square statistics. Biometrics 38:1011–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Pintilie M (2006) Competing risks, a practical perspective. Wiley, New York

    Book  MATH  Google Scholar 

  • Ponticelli C (1998) Withdrawal of steroids from a cyclosporine-based regimen: Pro. In: Transplantation Proceedings, vol 30, pp 1782–1784

  • Rubinstein R, Kroese D (2008) Simulation and the Monte Carlo method, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Vanrenterghem Y (1999) Strategies to reduce or replace steroid dosing. Transplant Proc 31:7S–10S

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Dong Seop Jeong, MD, Ph.D. and Sang Bin Han, MD, Ph.D. for providing the lung cancer patients’ data and the hepatocellular carcinoma patients’ data, respectively. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A2056869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinheum Kim.

Appendix

Appendix

For a fixed value of \(\mu ,\) the equivalence of \(\tilde{U}_\mu \) and \(v_\mu \) can be obtained straightforwardly as follows:

$$\begin{aligned} v_\mu= & {} \sum _{l=1}^{d_1}\left\{ 1- \xi _{l1}^{(1)\mu }\frac{d_1}{\tilde{r}_1^\mu }\right\} \varPhi _l^{(1)\mu }-\sum _{j=1}^{m_1} \xi _{1j1}^{\mu }\frac{d_1}{\tilde{r}_1^\mu }\varPhi _{1j}^\mu \\&\quad + \,\sum _{l=1}^{d_2}\left\{ 1- \xi _{l1}^{(2)\mu }\frac{d_1}{\tilde{r}_1^\mu }-\xi _{l2}^{(2)\mu }\frac{d_2}{\tilde{r}_2^\mu }\right\} \varPhi _l^{(2)\mu }-\sum _{j=1}^{m_2} \left\{ \xi _{2j1}^{\mu }\frac{d_1}{\tilde{r}_1^\mu }+\xi _{2j2}^{\mu }\frac{d_2}{\tilde{r}_2^\mu }\right\} \varPhi _{2j}^\mu \\&\quad + \, \cdots +\sum _{l=1}^{d_k}\left\{ 1- \xi _{l1}^{(k)\mu }\frac{d_1}{\tilde{r}_1^\mu }-\cdots -\xi _{lk}^{(k)\mu }\frac{d_k}{\tilde{r}_k^\mu }\right\} \varPhi _l^{(k)\mu } \\&\quad - \, \sum _{j=1}^{m_k} \left\{ \xi _{kj1}^{\mu }\frac{d_1}{\tilde{r}_1^\mu }+\cdots +\xi _{kjk}^{\mu }\frac{d_k}{\tilde{r}_k^\mu }\right\} \varPhi _{kj}^\mu \\= & {} \left\{ \sum _{l=1}^{d_1}\varPhi _l^{(1)\mu } +\sum _{l=1}^{d_2}\varPhi _l^{(2)\mu }+\cdots +\sum _{l=1}^{d_k}\varPhi _l^{(k)\mu }\right\} \\&\quad - \, d_1\frac{w_{11}^\mu }{\tilde{r}_1^\mu }\left\{ \sum _{l=1}^{d_1}\varPhi _l^{(1)\mu } +\sum _{l=1}^{d_2}\varPhi _l^{(2)\mu }+\cdots +\sum _{l=1}^{d_k}\varPhi _l^{(k)\mu } \right. \\&\quad \left. + \, \sum _{j=1}^{m_1}\varPhi _{1j}^\mu +\sum _{j=1}^{m_2}\varPhi _{2j}^\mu +\cdots +\sum _{j=1}^{m_k}\varPhi _{kj}^\mu \right\} \\&\quad - \, d_2\frac{w_{12}^\mu }{\tilde{r}_2^\mu }\left\{ \sum _{l=1}^{d_2}\varPhi _l^{(2)\mu }+\cdots +\sum _{l=1}^{d_k}\varPhi _l^{(k)\mu }+\sum _{j=1}^{m_2}\varPhi _{2j}^\mu +\cdots +\sum _{j=1}^{m_k}\varPhi _{kj}^\mu \right\} \\&\quad - \,\cdots -d_k\frac{w_{1k}^\mu }{\tilde{r}_k^\mu }\left\{ \sum _{l=1}^{d_k}\varPhi _l^{(k)\mu } +\sum _{j=1}^{m_k}\varPhi _{kj}^\mu \right\} \\= & {} \left\{ \sum _{l=1}^{d_1}\varPhi _l^{(1)\mu } +\sum _{l=1}^{d_2}\varPhi _l^{(2)\mu }+\cdots +\sum _{l=1}^{d_k}\varPhi _l^{(k)\mu }\right\} \\&\quad - \, \left\{ d_1\frac{\tilde{r}_{11}^\mu }{\tilde{r}_1^\mu }+d_2\frac{\tilde{r}_{12}^\mu }{\tilde{r}_2^\mu }+\cdots +d_k\frac{\tilde{r}_{1k}^\mu }{\tilde{r}_k^\mu }\right\} \\= & {} \sum _{i=1}^k\left\{ \sum _{l=1}^{d_i}\varPhi _l^{(i)\mu }-d_i\frac{\tilde{r}_{1i}^\mu }{\tilde{r}_i^\mu }\right\} \\= & {} \tilde{U}_\mu . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, Sy., Kim, S. & Kim, J. Determining cutoff values of prognostic factors in survival data with competing risks. Comput Stat 31, 369–386 (2016). https://doi.org/10.1007/s00180-015-0582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0582-x

Keywords

Navigation