Skip to main content
Log in

Global toolpath modulation–based contour error pre-compensation for multi-axis CNC machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract 

Contour error compensation is an active research topic in five-axis CNC machining, especially in the manufacturing of sculptured surface parts. Nevertheless, current methods are mainly based on the mirror compensation principle, and fail to obtain a desired level of accuracy when processing parts with tight curvature feature. To address this issue, a global toolpath modulation-based contour error pre-compensation method is developed in this paper, which incorporates the error compensation issue into the stage of toolpath planning with a linear analytical solution. In this method, the nominal toolpaths used to machine the products is first expressed by dual B-spline curves, and then the instantaneous tracking error model of each individual drive is built with respect to control points of splined path. Afterward, the satisfaction condition of the spline control points for eliminating the contour error is yielded, which provides a possibility for compensating contour error in a global manner, and the neighbor-dependent coupling issue in error compensation between adjacent cutter location points is capable of being handled as well. On this basis, by applying the least-squares technique, the complicated contour error pre-compensation problem is further converted into a solution of simpler linear equation system. For enhancing its robustness when processing long toolpaths, an adaptive piecewise modulation strategy is also developed. Finally, both experiment and simulation are conducted to validate the proposed method, and the results demonstrate that the proposed method can significantly improve contour precision at low computational costs when compared with the existing pre-compensation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References 

  1. Sun Y, Jia J, Jinting XU, Chen M, Niu J (2022) Path, feedrate and trajectory planning for free-from surface machining: a state-of-the-art review[J]. Chin J Aeronaut 35(8):12–29. https://doi.org/10.1016/j.cja.2021.06.011

  2. Tsao TC, Tomika M (1987) Zero phase error tracking algorithm for digital control[J]. ASME J Dynamic Systems, Measurement, and Control 10(4):349. https://doi.org/10.1115/1.3143822

    Article  Google Scholar 

  3. Tsao TC, Tomizuka M (1987) Adaptive zero phase error tracking algorithm for digital control[J]. Journal of Dynamic Systems Measurement & Control. https://doi.org/10.1115/1.3143866

    Article  MATH  Google Scholar 

  4. Torfs D, Schutter JD, Swevers J (1992) Extended bandwidth zero phase error tracking control of nonminimal phase systems[J]. J Dynamic Syst Measurement and Control 114(3):347–351. https://doi.org/10.1115/1.2897354

    Article  Google Scholar 

  5. Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part III: high speed tracking and contouring control of feed drives[J]. Int J Machine Tools Manufacture 41(11):1637–1658. https://doi.org/10.1016/S0890-6955(01)00004-9

    Article  Google Scholar 

  6. Altintas Y, Erkorkmaz K, Zhu WH (2000) Sliding mode controller design for high speed feed drives[J]. CIRP Annals - Manuf Technol 49(1):265–270. https://doi.org/10.1016/S0007-8506(07)62943-6

    Article  Google Scholar 

  7. Kamalzadeh A, Erkorkmaz K (2007) Accurate tracking controller design for high-speed drives[J]. Int J Machine Tools Manuf 47(9):13931400. https://doi.org/10.1016/j.ijmachtools.2006.08.027

    Article  Google Scholar 

  8. Yoram Koren (1980) Cross-coupled biaxial computer control for manufacturing systems[J]. J Dynamic Syst, Measurement, Control 102(4):265–272. https://doi.org/10.1115/1.3149612

    Article  MATH  Google Scholar 

  9. Koren Y, Lo CC (1991) Variable-gain cross-coupling controller for contouring[J]. Annals of the Cirp 40(1):371–374. https://doi.org/10.1016/S0007-8506(07)62009-5

    Article  Google Scholar 

  10. Srinivasan K, Kulkarni PK (1990) Cross-coupled control of biaxial feed drive servomechanisms[J]. J Dynamic Syst Measurement and Control 112(2):225–232. https://doi.org/10.1115/1.2896129

    Article  Google Scholar 

  11. Barton KL, Alleyne AG (2007) Cross-coupled ILC for improved precision motion control: design and implementation[C]// American Control Conference. IEEE. https://doi.org/10.1109/ACCESS.2020.3007422

    Article  Google Scholar 

  12. Xu W, Hou J, Li J, Yuan C, Simeone A (2020) Multi-axis motion control based on time-varying norm optimal cross-coupled iterative learning[J]. IEEE Access 8:124802–124811. https://doi.org/10.1109/ACCESS.2020.3007422

  13. Yeh S, Hsu P (1999) Theory and applications of the robust cross-coupled control design[J]. J Dyn Syst Meas Control 121(3):524–530. https://doi.org/10.1115/1.2802506

  14. Mumtazcan K, Melih C (2018) Development of a cross-coupled robust controller for a multi-axis micromachining system[J]. Journal of Dynamic Systems Measurement & Control 140(12):124501. https://doi.org/10.1115/1.4040443

    Article  Google Scholar 

  15. Ouyang PR, Dam T, Pano V (2014) Cross-coupled PID control in position domain for contour tracking[J]. Robotica 33(6):1–24. https://doi.org/10.1017/S0263574714000769

    Article  MATH  Google Scholar 

  16. Renton D, Elbestawi MA (2000) High speed servo control of multi-axis machine tools[J]. Int J Machine Tools and Manufacture 40(4):539–559. https://doi.org/10.1016/S0890-6955(99)00075-9

    Article  Google Scholar 

  17. Tang L, Landers RG (2013) Multiaxis contour control—the state of the art[J]. IEEE Trans Control Syst Technol 21(6):1997–2010. https://doi.org/10.1109/TCST.2012.2235179

    Article  Google Scholar 

  18. Yang S, Ghasemi AH, Lu X, Okwudire CE (2015) Pre-compensation of servo contour errors using a model predictive control framework[J]. Int J Machine Tools Manuf 98:50–60. https://doi.org/10.1016/j.ijmachtools.2015.08.002

    Article  Google Scholar 

  19. Sun Y, Chen M, Jia J, Lee YS, Guo D (2019) Jerk-limited feedrate scheduling and optimization for five-axis machining using new piecewise linear programming approach[J]. Sci Chin (Technological Sciences) 62(07):5–19. https://doi.org/10.1007/s11431-018-9404-9

    Article  Google Scholar 

  20. Yong T, Narayanaswami R (2003) A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining[J]. Computer-Aided Design 35(13):1249–1259. https://doi.org/10.1016/S0010-4485(03)00043-5

    Article  Google Scholar 

  21. Xu Du, Huang Jie, Zhu Li-Min (2015) A complete S-shape feed rate scheduling approach for NURBS interpolator. J Comp Design Eng 2(4):206–217. https://doi.org/10.1016/j.jcde.2015.06.004

    Article  Google Scholar 

  22. Wang Y, Yang D, Gai R, Wang S, Sun S (2015) Design of trigonometric velocity scheduling algorithm based on pre-interpolation and look-ahead interpolation[J]. Int J Machine Tools Manuf 96:94105. https://doi.org/10.1016/j.ijmachtools.2015.06.009

    Article  Google Scholar 

  23. Leng H, Yijie WU, Pan X (2008) Velocity planning algorithm for high speed machining of micro line blocks based on cubic polynomial model[J]. Comp Integrated Manuf Syst 14(2):336–299. https://doi.org/10.1016/j.commatsci.2008.03.016

    Article  Google Scholar 

  24. Sencer B, Altintas Y, Croft E (2008) Feed optimization for five-axis CNC machine tools with drive constraints[J]. Int J Machine Tools Manuf 48(7–8):733–745. https://doi.org/10.1016/j.ijmachtools.2008.01.002

    Article  Google Scholar 

  25. Beudaert X, Lavernhe S, Tournier C (2012) Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path[J]. Int J Mach Tools Manuf 57:73–82. https://doi.org/10.1016/j.ijmachtools.2012.02.005

  26. Sun Y, Zhao Y, Bao Y, Guo D (2015) A smooth curve evolution approach to the feedrate planning on five-axis toolpath with geometric and kinematic constraints[J]. Int J Machine Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2015.07.002

    Article  Google Scholar 

  27. Sun Y, Zhao Y, Bao Y, Guo D (2014) A novel adaptive-feedrate interpolation method for NURBS toolpath with drive constraints[J]. Int J Machine Tools & Manuf 77:74–81. https://doi.org/10.1016/j.ijmachtools.2013.11.002

    Article  Google Scholar 

  28. Sun Y, Zhao Y, Xu J, Guo D (2014) The feedrate scheduling of parametric interpolator with geometry, process and drive constraints for multi-axis CNC machine tools[J]. Int J Machine Tools Manuf 85:49–57. https://doi.org/10.1016/j.ijmachtools.2014.05.001

    Article  Google Scholar 

  29. Chen M, Sun Y (2019) Contour error–bounded parametric interpolator with minimum feedrate fluctuation for five-axis CNC machine tools[J]. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03586-5

    Article  Google Scholar 

  30. Zhang Q, Gao XS (2016) Practical feedrate optimization for planar high precision contouring[C]//2016 IEEE International Conference on Information and Automation (ICIA). IEEE, pp 1872–1877. https://doi.org/10.1109/ICInfA.2016.7832124

  31. Guo JX, Zhang K, Zhang Q, Gao XS (2013) Efficient time-optimal feedrate planning under dynamic constraints for a high-order CNC servo system[J]. Computer-Aided Design 45(12):1538–1546. https://doi.org/10.1016/j.cad.2013.07.002

    Article  Google Scholar 

  32. Zhang Q, Li S, Guo J (2014) Minimum time trajectory optimization of CNC machining with tracking error constraints[J]. Abstr Appl Anal 2014 (2014-7-17), 2014, 2014:1–15. https://doi.org/10.1155/2014/835098

  33. Yang J, Aslan D, Altintas Y (2018) A feedrate scheduling algorithm to constrain tool tip position and tool orientation errors of five-axis CNC machining under cutting load disturbances[J]. CIRP J Manuf Sci Technol 23:78–90. https://doi.org/10.1016/j.cirpj.2018.08.005

    Article  Google Scholar 

  34. Sun Y, Shi Z, Xu J (2022) Synchronous feedrate scheduling for the dual-robot machining of complex surface parts with varying wall thickness[J]. Int J Adv Manuf Technol 119(3):2653–2667. https://doi.org/10.1007/s00170-021-08512-2

    Article  Google Scholar 

  35. Lo CC, Hsiao CY (1998) CNC machine tool interpolator with path compensation for repeated contour machining[J]. Computer-Aided Design 30(1):55–62. https://doi.org/10.1016/S0010-4485(97)00053-5

    Article  Google Scholar 

  36. Yang X, Seethaler R, Zhan C, Lu, D, Zhao, W (2019) A model predictive contouring error precompensation method[J]. IEEE Trans Ind Electron 67(5):4036–4045. https://doi.org/10.1109/TIE.2019.2921294

  37. Wang Z, Hu C, Zhu Y, Zhu L (2021) Prediction-model-based contouring error iterative precompensation scheme for precision multiaxis motion systems. IEEE/ASME Transactions on Mechatronics 26(5):2274–2284. https://doi.org/10.1109/TMECH.2020.3034675

    Article  Google Scholar 

  38. Altintas Y, Khoshdarregi MR (2012) Contour error control of CNC machine tools with vibration avoidance[J]. CIRP Annals - Manufacturing Technology 61(1):335–338. https://doi.org/10.1016/j.cirp.2012.03.132

    Article  Google Scholar 

  39. Chin JH, Lin TC (1997) Cross-coupled precompensation method for the contouring accuracy of computer numerically controlled machine tools[J]. Int J Machine Tools Manuf 37(7):947–967. https://doi.org/10.1016/S0890-6955(96)00088-0

    Article  Google Scholar 

  40. Lam D, Manzie C, Good MC (2012) Model predictive contouring control for biaxial systems[J]. IEEE Trans Control Syst Technol 21(2):552–559. https://doi.org/10.1109/TCST.2012.2186229

  41. Jia Z, Song D, Ma J, Gao Y (2017) Pre-compensation for continuous-path running trajectory error in high-speed machining of parts with varied curvature features[J]. Chi J Mech Eng 30(01):46–54. https://doi.org/10.3901/CJME.2016.0127.015

    Article  Google Scholar 

  42. Xi XC, Poo AN, Hong GS (2009) Taylor series expansion error compensation for a bi-axial CNC machine[C]//2008 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2008, pp 1614–1619. https://doi.org/10.1109/ICSMC.2008.4811518

  43. Feng HA, Xcx B, Anp A (2012) Generalized Taylor series expansion for free-form two-dimensional contour error compensation[J]. Int J Machine Tools Manuf 53(1):91–99. https://doi.org/10.1016/j.ijmachtools.2011.10.001

    Article  Google Scholar 

  44. Khoshdarregi MR, Tappe S, Altintas Y (2014) Integrated five-axis trajectory shaping and contour error compensation for high-speed CNC machine tools[J]. IEEE/ASME Transactions on Mechatronics 19(6):1859–1871. https://doi.org/10.1109/TMECH.2014.2307473

    Article  Google Scholar 

  45. A K Z, B A Y, B Y A, (2013) Pre-compensation of contour errors in five-axis CNC machine tools[J]. Int J Machine Tools Manuf 74(8):1–11. https://doi.org/10.1016/j.ijmachtools.2013.07.003

    Article  Google Scholar 

  46. Ekm A, Uchiyama N (2013) Estimation of tool orientation contour errors for five-axis machining[J]. Robotics and Computer-Integrated Manufacturing 29(5):271–277. https://doi.org/10.1016/j.rcim.2013.01.002

    Article  Google Scholar 

  47. Chen M, Sun Y, Xu J (2020) A new analytical path-reshaping model and solution algorithm for contour error pre-compensation in multi-axis CNC machining[J]. J Manuf Sci Eng 142(6):1–14. https://doi.org/10.1115/1.4046749

    Article  Google Scholar 

  48. Hu C, Yu J, Wang Z, Zhu Y (2022) An iterative contouring error compensation scheme for five-axis precision motion systems[J]. Mech Syst Signal Process 178:109226. https://doi.org/10.1016/j.ymssp.2022.109226

    Article  Google Scholar 

  49. Langeron JM, Duc E, Lartigue C, Bourdet P (2004) A new format for 5-axis tool path computation, using Bspline curves[J]. Computer-Aided Design 36(12):1219–1229. https://doi.org/10.1016/j.cad.2003.12.002

    Article  Google Scholar 

  50. Dong J, Wang T, Li B, Ding Y (2014) Smooth feedrate planning for continuous short line tool path with contour error constraint[J]. Int J Mach Tools Manuf 76:1–12. https://doi.org/10.1016/j.ijmachtools.2013.09.009

  51. Song DN, Ma JW, Jia ZY, Gao YY (2017) Estimation and compensation for continuous-path running trajectory error in high-feed-speed machining[J]. Int J Adv Manuf Technol 89(5–8):1495–1508. https://doi.org/10.1007/s00170-016-9202-3

    Article  Google Scholar 

  52. Cheng MY, Lee CC (2007) Motion controller design for contour-following tasks based on real-time contour error estimation[J]. IEEE Transactions on Industrial Electronics 54(3):1686–1695. https://doi.org/10.1109/TIE.2007.894691

    Article  Google Scholar 

  53. Yeh SS, Hsu PL (2002) Estimation of the contouring error vector for the cross-coupled control design[J]. Mechatron IEEE/ASME Transac on 7(1):44–51. https://doi.org/10.1109/3516.990886

    Article  Google Scholar 

  54. Jia Z, Song D, Ma J, Zhao X, Su W (2017) Adaptive estimation and nonlinear variable gain compensation of the contouring error for precise parametric curve following[J]. Sci Chin Technol Sci 60(10):1494–1505. https://doi.org/10.1007/s11431-017-9042-x

    Article  Google Scholar 

  55. Zhu LM, Zhao H, Ding H (2013) Real-time contouring error estimation for multi-axis motion systems using the second-order approximation[J]. Int J Machine Tools Manuf 68:75–80. https://doi.org/10.1016/j.ijmachtools.2013.01.008

    Article  Google Scholar 

  56. Liu Y, Wan M, Xiao QB, Qin XB (2021) Combined predictive and feedback contour error control with dynamic contour error estimation for industrial five-axis machine tools[J]. IEEE Trans Ind Electron 69(7):6668–6677. https://doi.org/10.1109/TIE.2021.3097659

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yang Liu: investigation, data curation, validation, writing—original draft; Mansen Chen: supervision, writing—review and editing; Yuwen Sun: methodology, resources, writing—review and editing.

Corresponding author

Correspondence to Mansen Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors agree to publication in The International Journal of Advanced Manufacturing Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, M. & Sun, Y. Global toolpath modulation–based contour error pre-compensation for multi-axis CNC machining. Int J Adv Manuf Technol 125, 3171–3189 (2023). https://doi.org/10.1007/s00170-023-10857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10857-9

Keywords

Navigation