Skip to main content

Advertisement

Log in

Carbon solid lubricants: role of different dimensions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Over one-third of the worldwide energy production is estimated to be consumed by friction and wear. Delivering adequate lubrication between two contacting surfaces is one of the most efficient strategies to solve this issue. Over the past several decades, carbon materials have been regarded as promising lubricating materials due to their versatile structures, and superior mechanical, thermal, electrical, and chemical properties. This article provides a critical review on the lubricating performance of carbon materials with different dimensions ranging from zero (0D) to three dimensions (3D). Applications of these 0D to 3D carbon materials as lubricant coatings, additives in lubricants, and reinforcements in composites are reviewed. The mechanisms of the enhanced friction reduction and anti-wear performance based on the carbon-based lubricating materials are discussed. This review provides valuable guidelines on the selection and design of eco-friendly and nontoxic carbon-based lubricating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang B, Xue Y, Qiang L, Gao K, Liu Q, Yang B, Liang A, Zhang J (2017) Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface. Appl Nanosci 7(8):835–842. https://doi.org/10.1007/s13204-017-0622-7

    Article  Google Scholar 

  2. Holmberg K, Erdemir A (2017) Influence of tribology on global energy consumption, costs and emissions. Friction 5(3):263–284. https://doi.org/10.1007/s40544-017-0183-5

    Article  Google Scholar 

  3. Sayfidinov K, Cezan SD, Baytekin B, Baytekin HT (2018) Minimizing friction, wear, and energy losses by eliminating contact charging. Sci Adv 4(11):eaau3808. https://doi.org/10.1126/sciadv.aau3808

    Article  Google Scholar 

  4. Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A (2017) Global energy consumption due to friction and wear in the mining industry. Tribol Int 115:116–139. https://doi.org/10.1016/j.triboint.2017.05.010

    Article  Google Scholar 

  5. Nosonovsky M (2007) Oil as a lubricant in the ancient middle east. Tribol Online 2(2):44–49. https://doi.org/10.2474/trol.2.44

    Article  Google Scholar 

  6. Reeves CJ, Menezes PL, Lovell MR, Jen T-C (2013) Tribology of solid lubricants. In: Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR (eds) Tribology for scientists and engineers: from basics to advanced concepts. Springer New York, New York, pp 447–494. https://doi.org/10.1007/978-1-4614-1945-7_13

    Chapter  Google Scholar 

  7. Prajapati AK, Omrani E, Menezes PL, Rohatgi PK (2018) Fundamentals of solid lubricants. In: Menezes PL, Rohatgi PK, Omrani E (eds) Self-lubricating composites. Springer, Berlin Heidelberg, pp 1–32. https://doi.org/10.1007/978-3-662-56528-5_1

    Chapter  Google Scholar 

  8. Hsieh TH, Huang YS (2017) The mechanical properties and delamination of carbon fiber-reinforced polymer laminates modified with carbon aerogel. J Mater Sci 52(6):3520–3534. https://doi.org/10.1007/s10853-016-0646-5

    Article  Google Scholar 

  9. Okoro AM, Lephuthing SS, Oke SR, Falodun OE, Awotunde MA, Olubambi PA (2019) A review of spark plasma sintering of carbon nanotubes reinforced titanium-based nanocomposites: fabrication, densification, and mechanical properties. JOM 71(2):567–584. https://doi.org/10.1007/s11837-018-3277-2

    Article  Google Scholar 

  10. Gspann TS, Juckes SM, Niven JF, Johnson MB, Elliott JA, White MA, Windle AH (2017) High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon 114:160–168. https://doi.org/10.1016/j.carbon.2016.12.006

    Article  Google Scholar 

  11. Muley SV, Ravindra NM (2016) Thermoelectric properties of pristine and doped graphene nanosheets and graphene nanoribbons: part I. JOM 68(6):1653–1659. https://doi.org/10.1007/s11837-016-1871-8

    Article  Google Scholar 

  12. Xiong G, Meng C, Reifenberger RG, Irazoqui PP, Fisher TS (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26(1):30–51. https://doi.org/10.1002/elan.201300238

    Article  Google Scholar 

  13. Torres T (2017) Graphene chemistry. Chem Soc Rev 46(15):4385–4386. https://doi.org/10.1039/C7CS90061A

    Article  Google Scholar 

  14. Dang VT, Nguyen DD, Cao TT, Le PH, Tran DL, Phan NM, Nguyen VC (2016) Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv Nat Sci 7(3):033002. https://doi.org/10.1088/2043-6262/7/3/033002

    Article  Google Scholar 

  15. Diederich F, Thilgen C (1996) Covalent fullerene chemistry. Science 271(5247):317–324. https://doi.org/10.1126/science.271.5247.317

    Article  Google Scholar 

  16. Prato M (1997) [60]fullerene chemistry for materials science applications. J Mater Chem 7(7):1097–1109. https://doi.org/10.1039/A700080D

    Article  Google Scholar 

  17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  18. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  19. Kasar AK, Xiong G, Menezes PL (2018) Graphene-reinforced metal and polymer matrix composites. JOM 70(6):829–836. https://doi.org/10.1007/s11837-018-2823-2

    Article  Google Scholar 

  20. Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G, Lian J (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252):1083–1087. https://doi.org/10.1126/science.aaa6502

    Article  Google Scholar 

  21. Kasar AK, Menezes PL (2018) Synthesis and recent advances in tribological applications of graphene. Int J Adv Manuf Technol 97(9):3999–4019. https://doi.org/10.1007/s00170-018-2019-5

    Article  Google Scholar 

  22. Teobaldi G, Ohnishi H, Tanimura K, Shluger AL (2010) The effect of van der Waals interactions on the properties of intrinsic defects in graphite. Carbon 48(14):4145–4161. https://doi.org/10.1016/j.carbon.2010.07.029

    Article  Google Scholar 

  23. Chen B, Bi Q, Yang J, Xia Y, Hao J (2008) Tribological properties of solid lubricants (graphite, h-BN) for cu-based P/M friction composites. Tribol Int 41(12):1145–1152. https://doi.org/10.1016/j.triboint.2008.02.014

    Article  Google Scholar 

  24. Jiang X, Song J, Su Y, Zhang Y, Hu L (2018) Novel design of copper–graphite self-lubricating composites for reliability improvement based on 3d network structures of copper matrix. Tribol Lett 66(4):143–111. https://doi.org/10.1007/s11249-018-1098-7

    Article  Google Scholar 

  25. Niu M, Qu J (2018) Tribological properties of nano-graphite as an additive in mixed oil-based titanium complex grease. RSC Adv 8(73):42133–42144. https://doi.org/10.1039/C8RA08109C

    Article  Google Scholar 

  26. Xing M, Wang R, Yu J (2014) Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. Int J Refrig 40:398–403. https://doi.org/10.1016/j.ijrefrig.2013.12.004

    Article  Google Scholar 

  27. Miura K, Ishikawa M (2010) C60 intercalated graphite as nanolubricants. Materials 3(9):4510–4517. https://doi.org/10.3390/ma3094510

    Article  Google Scholar 

  28. Zhang X, Luster B, Church A, Muratore C, Voevodin AA, Kohli P, Aouadi S, Talapatra S (2009) Carbon nanotube−MoS2 composites as solid lubricants. ACS Appl Mater Interfaces 1(3):735–739. https://doi.org/10.1021/am800240e

    Article  Google Scholar 

  29. Kim KS, Lee HJ, Lee C, Lee SK, Jang H, Ahn JH, Kim JH, Lee HJ (2011) Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano 5(6):5107–5114. https://doi.org/10.1021/nn2011865

    Article  Google Scholar 

  30. Gupta B, Kumar N, Panda K, Dash S, Tyagi AK (2016) Energy efficient reduced graphene oxide additives: mechanism of effective lubrication and antiwear properties. Sci Rep 6:18372. https://doi.org/10.1038/srep18372

    Article  Google Scholar 

  31. Pu J, Mo Y, Wan S, Wang L (2014) Fabrication of novel graphene–fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chem Commun 50(4):469–471. https://doi.org/10.1039/C3CC47486K

    Article  Google Scholar 

  32. Song HJ, Li N (2011) Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl Phys A Mater Sci Process 105(4):827–832. https://doi.org/10.1007/s00339-011-6636-1

    Article  Google Scholar 

  33. Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17(1):31–42. https://doi.org/10.1016/j.mattod.2013.12.003

    Article  Google Scholar 

  34. Yu B, Liu Z, Ma C, Sun J, Liu W, Zhou F (2015) Ionic liquid modified multi-walled carbon nanotubes as lubricant additive. Tribol Int 81:38–42. https://doi.org/10.1016/j.triboint.2014.07.019

    Article  Google Scholar 

  35. Khun NW, Zhang H, Yang J, Liu E (2013) Mechanical and tribological properties of epoxy matrix composites modified with microencapsulated mixture of wax lubricant and multi-walled carbon nanotubes. Friction 1(4):341–349. https://doi.org/10.1007/s40544-013-0028-9

    Article  Google Scholar 

  36. Ravindran P, Manisekar K, Narayanasamy R, Narayanasamy P (2013) Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram Int 39(2):1169–1182. https://doi.org/10.1016/j.ceramint.2012.07.041

    Article  Google Scholar 

  37. Ku BC, Han YC, Lee JE, Lee JK, Park SH, Hwang Y-J (2010) Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity. Int J Precis Eng Manf 11(4):607–611. https://doi.org/10.1007/s12541-010-0070-8

    Article  Google Scholar 

  38. Gao X, Yue H, Guo E, Zhang S, Yao L, Lin X, Wang B, Guan E (2018) Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets. J Mater Sci Technol 34(10):1925–1931. https://doi.org/10.1016/j.jmst.2018.02.010

    Article  Google Scholar 

  39. Nie P, Min C, Song HJ, Chen X, Zhang Z, Zhao K (2015) Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol Lett 58(1):7–12. https://doi.org/10.1007/s11249-015-0476-7

    Article  Google Scholar 

  40. Zhai W, Srikanth N, Kong LB, Zhou K (2017) Carbon nanomaterials in tribology. Carbon 119:150–171. https://doi.org/10.1016/j.carbon.2017.04.027

    Article  Google Scholar 

  41. Donnet C, Erdemir A (2004) Historical developments and new trends in tribological and solid lubricant coatings. Surf Coat Technol 180-181:76–84. https://doi.org/10.1016/j.surfcoat.2003.10.022

    Article  Google Scholar 

  42. Renevier NM, Lobiondo N, Fox VC, Teer DG, Hampshire J (2000) Performance of MoS2/metal composite coatings used for dry machining and other industrial applications. Surf Coat Technol 123(1):84–91. https://doi.org/10.1016/S0257-8972(99)00424-7

    Article  Google Scholar 

  43. Piri-Moghadam H, Alam MN, Pawliszyn J (2017) Review of geometries and coating materials in solid phase microextraction: opportunities, limitations, and future perspectives. Anal Chim Acta 984:42–65. https://doi.org/10.1016/j.aca.2017.05.035

    Article  Google Scholar 

  44. Dehghanghadikolaei A, Fotovvati B (2019) Coating techniques for functional enhancement of metal implants for bone replacement: a review. Materials 12(11):1795

    Article  Google Scholar 

  45. Fotovvati B, Namdari N, Dehghanghadikolaei A (2019) On coating techniques for surface protection: a review. J Manuf Mater Process 3(1):28

    Google Scholar 

  46. Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206(23):4778–4784. https://doi.org/10.1016/j.surfcoat.2012.03.077

    Article  Google Scholar 

  47. Echegoyen L, Echegoyen LE (1998) Electrochemistry of fullerenes and their derivatives. Acc Chem Res 31(9):593–601. https://doi.org/10.1021/ar970138v

    Article  Google Scholar 

  48. Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644. https://doi.org/10.1016/j.carbon.2003.12.084

    Article  Google Scholar 

  49. Hilder M, Winther-Jensen B, Li D, Forsyth M, MacFarlane DR (2011) Direct electro-deposition of graphene from aqueous suspensions. Phys Chem Chem Phys 13(20):9187–9193. https://doi.org/10.1039/C1CP20173E

    Article  Google Scholar 

  50. Liu C, Wang K, Luo S, Tang Y, Chen L (2011) Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small 7(9):1203–1206. https://doi.org/10.1002/smll.201002340

    Article  Google Scholar 

  51. Lüthi R, Meyer E, Haefke H, Howald L, Gutmannsbauer W, Güntherodt H-J (1994) Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science 266(5193):1979–1981. https://doi.org/10.1126/science.266.5193.1979

    Article  Google Scholar 

  52. Bhushan B, Gupta BK, Van Cleef GW, Capp C, Coe JV (1993) Fullerene (C60) films for solid lubrication. Tribol Trans 36(4):573–580. https://doi.org/10.1080/10402009308983197

    Article  Google Scholar 

  53. Bhushan B, Gupta BK (1994) Friction and wear of ion-implanted diamondlike carbon and fullerene films for thin-film rigid disks. J Appl Phys 75(10):6156–6158. https://doi.org/10.1063/1.355440

    Article  Google Scholar 

  54. Miura K, Kamiya S, Sasaki N (2003) C60 molecular bearings. Phys Rev Lett 90(5):055509. https://doi.org/10.1103/PhysRevLett.90.055509

    Article  Google Scholar 

  55. Li X, Yang W (2007) Simulating fullerene ball bearings of ultra-low friction. Nanotechnology 18(11):115718. https://doi.org/10.1088/0957-4484/18/11/115718

    Article  Google Scholar 

  56. Wang Y, Guo J, Gao K, Zhang B, Liang A, Zhang J (2014) Understanding the ultra-low friction behavior of hydrogenated fullerene-like carbon films grown with different flow rates of hydrogen gas. Carbon 77:518–524. https://doi.org/10.1016/j.carbon.2014.05.057

    Article  Google Scholar 

  57. Dorri Moghadam A, Omrani E, Menezes PL, Rohatgi PK (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – a review. Compos Part B 77:402–420. https://doi.org/10.1016/j.compositesb.2015.03.014

    Article  Google Scholar 

  58. Xiong G, He P, Lyu Z, Chen T, Huang B, Chen L, Fisher TS (2018) Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat Commun 9(1):790. https://doi.org/10.1038/s41467-018-03112-3

    Article  Google Scholar 

  59. Samad MA, Sinha SK (2011) Mechanical, thermal and tribological characterization of a UHMWPE film reinforced with carbon nanotubes coated on steel. Tribol Int 44(12):1932–1941. https://doi.org/10.1016/j.triboint.2011.08.001

    Article  Google Scholar 

  60. Vander Wal RL, Miyoshi K, Street KW, Tomasek AJ, Peng H, Liu Y, Margrave JL, Khabashesku VN (2005) Friction properties of surface-fluorinated carbon nanotubes. Wear 259(1):738–743. https://doi.org/10.1016/j.wear.2005.02.082

    Article  Google Scholar 

  61. Dickrell PL, Pal SK, Bourne GR, Muratore C, Voevodin AA, Ajayan PM, Schadler LS, Sawyer WG (2006) Tunable friction behavior of oriented carbon nanotube films. Tribol Lett 24(1):85–90. https://doi.org/10.1007/s11249-006-9162-0

    Article  Google Scholar 

  62. Satyanarayana N, Rajan KSS, Sinha SK, Shen L (2007) Carbon nanotube reinforced polyimide thin-film for high wear durability. Tribol Lett 27(2):181–188. https://doi.org/10.1007/s11249-007-9219-8

    Article  Google Scholar 

  63. Xu R, Bian D, Zhao Y, Xu X, Liu Y, Zhou W (2019) Tribological behavior studies of chemically bonded phosphate ceramic coatings reinforced with modified multi-walled carbon nanotubes (MWCNTs). Int J Appl Ceram Technol. https://doi.org/10.1111/ijac.13386

  64. Kang K, Park H, Kim J, Lee C (2015) Role of spray processes on microstructural evolution, and physical and mechanical properties of multi-walled carbon nanotube reinforced cu composite coatings. Appl Surf Sci 356:1039–1051. https://doi.org/10.1016/j.apsusc.2015.08.158

    Article  Google Scholar 

  65. Song H, Qi H, Li N, Zhang X (2011) Tribological behaviour of carbon nanotubes/polyurethane nanocomposite coatings. Micro Nano Lett 6(1):48–51. https://doi.org/10.1049/mnl.2010.0167

    Article  Google Scholar 

  66. Wang HD, He PF, Ma GZ, Xu BS, Xing ZG, Chen SY, Liu Z, Wang YW (2018) Tribological behavior of plasma sprayed carbon nanotubes reinforced TiO2 coatings. J Eur Ceram Soc 38(10):3660–3672. https://doi.org/10.1016/j.jeurceramsoc.2018.04.019

    Article  Google Scholar 

  67. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  68. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  69. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564. https://doi.org/10.1021/nn101781v

    Article  Google Scholar 

  70. Mi Y, Wang Z, Liu X, Yang S, Wang H, Ou J, Li Z, Wang J (2012) A simple and feasible in-situ reduction route for preparation of graphene lubricant films applied to a variety of substrates. J Mater Chem 22(16):8036–8042. https://doi.org/10.1039/C2JM16656A

    Article  Google Scholar 

  71. Berman D, Erdemir A, Sumant AV (2013) Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54:454–459. https://doi.org/10.1016/j.carbon.2012.11.061

    Article  Google Scholar 

  72. Feng X, Kwon S, Park JY, Salmeron M (2013) Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7(2):1718–1724. https://doi.org/10.1021/nn305722d

    Article  Google Scholar 

  73. Mishra N, Boeckl J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: a review. Phys Status Solidi A 213(9):2277–2289. https://doi.org/10.1002/pssa.201600091

    Article  Google Scholar 

  74. Deokar G, Avila J, Razado-Colambo I, Codron JL, Boyaval C, Galopin E, Asensio MC, Vignaud D (2015) Towards high quality CVD graphene growth and transfer. Carbon 89:82–92. https://doi.org/10.1016/j.carbon.2015.03.017

    Article  Google Scholar 

  75. Shen J, Hu Y, Li C, Qin C, Shi M, Ye M (2009) Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25(11):6122–6128. https://doi.org/10.1021/la900126g

    Article  Google Scholar 

  76. Liu LH, Zorn G, Castner DG, Solanki R, Lerner MM, Yan M (2010) A simple and scalable route to wafer-size patterned graphene. J Mater Chem 20(24):5041–5046. https://doi.org/10.1039/C0JM00509F

    Article  Google Scholar 

  77. Huang Y, Yao Q, Qi Y, Cheng Y, Wang H, Li Q, Meng Y (2017) Wear evolution of monolayer graphene at the macroscale. Carbon 115:600–607. https://doi.org/10.1016/j.carbon.2017.01.056

    Article  Google Scholar 

  78. Liu SW, Wang HP, Xu Q, Ma TB, Yu G, Zhang C, Geng D, Yu Z, Zhang S, Wang W, Hu YZ, Wang H, Luo J (2017) Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8(1):14029. https://doi.org/10.1038/ncomms14029

    Article  Google Scholar 

  79. Wu P, Li X, Zhang C, Chen X, Lin S, Sun H, Lin CT, Zhu H, Luo J (2017) Self-assembled graphene film as low friction solid lubricant in macroscale contact. ACS Appl Mater Interfaces 9(25):21554–21562. https://doi.org/10.1021/acsami.7b04599

    Article  Google Scholar 

  80. Algul H, Tokur M, Ozcan S, Uysal M, Cetinkaya T, Akbulut H, Alp A (2015) The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites. Appl Surf Sci 359:340–348. https://doi.org/10.1016/j.apsusc.2015.10.139

    Article  Google Scholar 

  81. Siddaiah A, Kumar P, Henderson A, Misra M, Menezes PL (2019) Surface energy and tribology of electrodeposited Ni and Ni–graphene coatings on steel. Lubricants 7(10):87. https://doi.org/10.3390/lubricants7100087

    Article  Google Scholar 

  82. Nazir MH, Khan ZA, Saeed A, Siddaiah A, Menezes PL (2018) Synergistic wear-corrosion analysis and modelling of nanocomposite coatings. Tribol Int 121:30–44. https://doi.org/10.1016/j.triboint.2018.01.027

    Article  Google Scholar 

  83. Liang H, Bu Y, Zhang J, Cao Z, Liang A (2013) Graphene oxide film as solid lubricant. ACS Appl Mater Interfaces 5(13):6369–6375. https://doi.org/10.1021/am401495y

    Article  Google Scholar 

  84. Sandoz-Rosado EJ, Tertuliano OA, Terrell EJ (2012) An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings. Carbon 50(11):4078–4084. https://doi.org/10.1016/j.carbon.2012.04.055

    Article  Google Scholar 

  85. Bryant PJ, Gutshall PL, Taylor LH (1964) A study of mechanisms of graphite friction and wear. Wear 7(1):118–126. https://doi.org/10.1016/0043-1648(64)90083-3

    Article  Google Scholar 

  86. Berman D, Erdemir A, Sumant AV (2013) Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59:167–175. https://doi.org/10.1016/j.carbon.2013.03.006

    Article  Google Scholar 

  87. Chen W, Yu Y, Cheng J, Wang S, Zhu S, Liu W, Yang J (2018) Microstructure, mechanical properties and dry sliding wear behavior of cu-Al2O3-graphite solid-lubricating coatings deposited by low-pressure cold spraying. J Therm Spray Technol 27(8):1652–1663. https://doi.org/10.1007/s11666-018-0773-4

    Article  Google Scholar 

  88. Yeldose BC, Ramamoorthy B (2008) Characterization of DC magnetron sputtered diamond-like carbon (DLC) nano coating. Int J Adv Manuf Technol 38(7):705–717. https://doi.org/10.1007/s00170-007-1131-8

    Article  Google Scholar 

  89. De Barros Bouchet MI, Martin JM, Avila J, Kano M, Yoshida K, Tsuruda T, Bai S, Higuchi Y, Ozawa N, Kubo M, Asensio MC (2017) Diamond-like carbon coating under oleic acid lubrication: evidence for graphene oxide formation in superlow friction. Sci Rep 7(1):46394. https://doi.org/10.1038/srep46394

    Article  Google Scholar 

  90. Liu Y, Liu J, Wang J, Banis MN, Xiao B, Lushington A, Xiao W, Li R, Sham T-K, Liang G, Sun X (2018) Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating. Nat Commun 9(1):929. https://doi.org/10.1038/s41467-018-03324-7

    Article  Google Scholar 

  91. Bernard P, Alper JP, Haon C, Herlin-Boime N, Chandesris M (2019) Electrochemical analysis of silicon nanoparticle lithiation – effect of crystallinity and carbon coating quantity. J Power Sources 435:226769. https://doi.org/10.1016/j.jpowsour.2019.226769

    Article  Google Scholar 

  92. Menezes PL, Reeves CJ, Lovell MR (2013) Fundamentals of lubrication. In: Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR (eds) Tribology for scientists and engineers: from basics to advanced concepts. Springer New York, New York, pp 295–340. https://doi.org/10.1007/978-1-4614-1945-7_10

    Chapter  Google Scholar 

  93. Ali I, Basheer AA, Kucherova A, Memetov N, Pasko T, Ovchinnikov K, Pershin V, Kuznetsov D, Galunin E, Grachev V, Tkachev A (2019) Advances in carbon nanomaterials as lubricants modifiers. J Mol Liq 279:251–266. https://doi.org/10.1016/j.molliq.2019.01.113

    Article  Google Scholar 

  94. Reeves CJ, Siddaiah A, Menezes PL (2017) A review on the science and technology of natural and synthetic biolubricants. J Bio- Tribo-Corros 3(1):11–27. https://doi.org/10.1007/s40735-016-0069-5

    Article  Google Scholar 

  95. Alazemi AA, Etacheri V, Dysart AD, Stacke L-E, Pol VG, Sadeghi F (2015) Ultrasmooth submicrometer carbon spheres as lubricant additives for friction and wear reduction. ACS Appl Mater Interfaces 7(9):5514–5521. https://doi.org/10.1021/acsami.5b00099

    Article  Google Scholar 

  96. St.Dennis JE, Jin K, John VT, Pesika NS (2011) Carbon microspheres as ball bearings in aqueous-based lubrication. ACS Appl Mater Interfaces 3(7):2215–2218. https://doi.org/10.1021/am200581q

    Article  Google Scholar 

  97. Chen CS, Chen XH, Xu LS, Yang Z, Li WH (2005) Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43(8):1660–1666. https://doi.org/10.1016/j.carbon.2005.01.044

    Article  Google Scholar 

  98. Chauveau V, Mazuyer D, Dassenoy F, Cayer-Barrioz J (2012) In situ film-forming and friction-reduction mechanisms for carbon-nanotube dispersions in lubrication. Tribol Lett 47(3):467–480. https://doi.org/10.1007/s11249-012-0006-9

    Article  Google Scholar 

  99. Kałużny J, Merkisz-Guranowska A, Giersig M, Kempa K (2017) Lubricating performance of carbon nanotubes in internal combustion engines – engine test results for CNT enriched oil. Int J Automot Technol 18(6):1047–1059. https://doi.org/10.1007/s12239-017-0102-9

    Article  Google Scholar 

  100. Carrión FJ, Sanes J, Bermúdez M-D, Arribas A (2011) New single-walled carbon nanotubes–ionic liquid lubricant. Application to polycarbonate–stainless steel sliding contact. Tribol Lett 41(1):199–207. https://doi.org/10.1007/s11249-010-9700-7

    Article  Google Scholar 

  101. Khalil W, Mohamed A, Bayoumi M, Osman TA (2016) Tribological properties of dispersed carbon nanotubes in lubricant. Fullerenes, Nanotubes, Carbon Nanostruct 24(7):479–485. https://doi.org/10.1080/1536383X.2016.1188804

    Article  Google Scholar 

  102. E-o-l E, Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi SS (2013) Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass 46:142–147. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.003

    Article  Google Scholar 

  103. Wang B, Wang X, Lou W, Hao J (2010) Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes. J Phys Chem C 114(19):8749–8754. https://doi.org/10.1021/jp1005346

    Article  Google Scholar 

  104. Reeves C, Menezes P, Lovell MR, Jen TC (2014) the effect of particulate additives on the tribological performance of bio-based and ionic liquid-based lubricants for energy conservation and sustainability. STLE Annual Meeting & Exhibition 2:834–836

  105. Zhang W, Zhou M, Zhu H, Tian Y, Wang K, Wei J, Ji F, Li X, Li Z, Zhang P, Wu D (2011) Tribological properties of oleic acid-modified graphene as lubricant oil additives. J Phys D Appl Phys 44(20):205303. https://doi.org/10.1088/0022-3727/44/20/205303

    Article  Google Scholar 

  106. Lin J, Wang L, Chen G (2011) Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol Lett 41(1):209–215. https://doi.org/10.1007/s11249-010-9702-5

    Article  Google Scholar 

  107. Mungse HP, Kumar N, Khatri OP (2015) Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets. RSC Adv 5(32):25565–25571. https://doi.org/10.1039/C4RA16975A

    Article  Google Scholar 

  108. Sarno M, Senatore A, Cirillo C, Petrone V, Ciambelli P (2014) Oil lubricant tribological behaviour improvement through dispersion of few layer graphene oxide. J Nanosci Nanotechnol 14(7):4960–4968. https://doi.org/10.1166/jnn.2014.8673

    Article  Google Scholar 

  109. Kinoshita H, Nishina Y, Alias AA, Fujii M (2014) Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66:720–723. https://doi.org/10.1016/j.carbon.2013.08.045

    Article  Google Scholar 

  110. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Graphene-based engine oil nanofluids for tribological applications. ACS Appl Mater Interfaces 3(11):4221–4227. https://doi.org/10.1021/am200851z

    Article  Google Scholar 

  111. Gupta B, Kumar N, Panda K, Kanan V, Joshi S, Visoly-Fisher I (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci Rep 7:45030. https://doi.org/10.1038/srep45030

    Article  Google Scholar 

  112. Omrani E, Menezes PL, Rohatgi PK (2019) Effect of micro- and nano-sized carbonous solid lubricants as oil additives in nanofluid on tribological properties. Lubricants 7(3):25. https://doi.org/10.3390/lubricants7030025

    Article  Google Scholar 

  113. Siddaiah A, Kasar AK, Manoj A, Menezes PL (2019) Influence of environmental friendly multiphase lubricants on the friction and transfer layer formation during sliding against textured surfaces. J Clean Prod 209:1245–1251. https://doi.org/10.1016/j.jclepro.2018.10.322

    Article  Google Scholar 

  114. Su Y, Gong L, Chen D (2015) An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomater 2015:7. https://doi.org/10.1155/2015/276753

    Article  Google Scholar 

  115. Lee CG, Hwang YJ, Choi YM, Lee JK, Choi C, Oh JM (2009) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10(1):85–90. https://doi.org/10.1007/s12541-009-0013-4

    Article  Google Scholar 

  116. Martorana P, Bayer IS, Steele A, Loth E (2010) Effect of graphite and carbon nanofiber additives on the performance efficiency of a gear pump driven hydraulic circuit using ethanol. Ind Eng Chem Res 49(22):11363–11368. https://doi.org/10.1021/ie100872g

    Article  Google Scholar 

  117. Ginzburg BM, Shibaev LA, Kireenko OF, Shepelevskii AA, Baidakova MV, Sitnikova AA (2002) Antiwear effect of fullerene C60 additives to lubricating oils. Russ J Appl Chem 75(8):1330–1335. https://doi.org/10.1023/A:1020929515246

    Article  Google Scholar 

  118. Lee J, Cho S, Hwang Y, Lee C, Kim SH (2007) Enhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additives. Tribol Lett 28(2):203–208. https://doi.org/10.1007/s11249-007-9265-2

    Article  Google Scholar 

  119. Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J (2009) Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys 9(2, supplement):e128–e131. https://doi.org/10.1016/j.cap.2008.12.054

    Article  Google Scholar 

  120. Omrani E, Rohatgi P, Menezes P (2017) Tribology and applications of self-lubricating materials. https://doi.org/10.1201/9781315154077

  121. de Mello JDB, Binder C, Probst SMH, Klein AN (2018) In situ generated turbostratic 2D graphite: a new way to obtain high-performance self-lubricating iron-based composites. In: Menezes PL, Rohatgi PK, Omrani E (eds) Self-lubricating composites. Springer, Berlin Heidelberg, pp 181–230. https://doi.org/10.1007/978-3-662-56528-5_7

    Chapter  Google Scholar 

  122. Wang H, Feng J, Hu X, Ng KM (2008) Tribological behaviors of aligned carbon nanotube/fullerene-epoxy nanocomposites. Polym Eng Sci 48(8):1467–1475. https://doi.org/10.1002/pen.21068

    Article  Google Scholar 

  123. Yoshimoto S, Amano J, Miura K (2010) Synthesis of a fullerene/expanded graphite composite and its lubricating properties. J Mater Sci 45(7):1955–1962. https://doi.org/10.1007/s10853-009-4187-z

    Article  Google Scholar 

  124. Miura K, Tsuda D, Itamura N, Sasaki N (2007) Superlubricity of fullerene intercalated graphite composite. Jpn J Appl Phys 46(8A):5269–5274. https://doi.org/10.1143/jjap.46.5269

    Article  Google Scholar 

  125. Arai S, Fujimori A, Murai M, Endo M (2008) Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater Lett 62(20):3545–3548. https://doi.org/10.1016/j.matlet.2008.03.047

    Article  Google Scholar 

  126. Yan L, Wang H, Wang C, Sun L, Liu D, Zhu Y (2013) Friction and wear properties of aligned carbon nanotubes reinforced epoxy composites under water lubricated condition. Wear 308(1):105–112. https://doi.org/10.1016/j.wear.2013.10.007

    Article  Google Scholar 

  127. Golchin A, Wikner A, Emami N (2016) An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts. Tribol Int 95:156–161. https://doi.org/10.1016/j.triboint.2015.11.023

    Article  Google Scholar 

  128. Puchy V, Hvizdos P, Dusza J, Kovac F, Inam F, Reece MJ (2013) Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceram Int 39(5):5821–5826. https://doi.org/10.1016/j.ceramint.2012.12.100

    Article  Google Scholar 

  129. Bastwros MMH, Esawi AMK, Wifi A (2013) Friction and wear behavior of Al–CNT composites. Wear 307(1):164–173. https://doi.org/10.1016/j.wear.2013.08.021

    Article  Google Scholar 

  130. Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH, Jeon S (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724–6729. https://doi.org/10.1002/adma.201302495

    Article  Google Scholar 

  131. Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66(8):594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  Google Scholar 

  132. Xu Z, Shi X, Zhai W, Yao J, Song S, Zhang Q (2014) Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 67:168–177. https://doi.org/10.1016/j.carbon.2013.09.077

    Article  Google Scholar 

  133. Tabandeh-Khorshid M, Omrani E, Menezes PL, Rohatgi PK (2016) Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Eng Sci Technol Int J 19(1):463–469. https://doi.org/10.1016/j.jestch.2015.09.005

    Article  Google Scholar 

  134. Menezes PL, Rohatgi PK, Lovell MR (2012) Self-lubricating behavior of graphite reinforced metal matrix composites. In: Nosonovsky M, Bhushan B (eds) Green tribology: Biomimetics, Energy Conservation and Sustainability. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 445–480. https://doi.org/10.1007/978-3-642-23681-5_17

    Chapter  Google Scholar 

  135. Menezes PL, Reeves CJ, Rohatgi PK, Lovell MR (2013) Self-lubricating behavior of graphite-reinforced composites. In: Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR (eds) Tribology for scientists and engineers: from basics to advanced concepts. Springer New York, New York, pp 341–389. https://doi.org/10.1007/978-1-4614-1945-7_11

    Chapter  Google Scholar 

  136. Omrani E, Moghadam AD, Menezes PL, Rohatgi PK (2016) Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—a review. Int J Adv Manuf Technol 83(1):325–346. https://doi.org/10.1007/s00170-015-7528-x

    Article  Google Scholar 

  137. Ma W, Lu J (2011) Effect of sliding speed on surface modification and tribological behavior of copper–graphite composite. Tribol Lett 41(2):363–370. https://doi.org/10.1007/s11249-010-9718-x

    Article  Google Scholar 

  138. Ma W, Lu J (2011) Effect of surface texture on transfer layer formation and tribological behaviour of copper–graphite composite. Wear 270(3):218–229. https://doi.org/10.1016/j.wear.2010.10.062

    Article  Google Scholar 

  139. Omrani E, Moghadam AD, Algazzar M, Menezes PL, Rohatgi PK (2016) Effect of graphite particles on improving tribological properties Al-16Si-5Ni-5Graphite self-lubricating composite under fully flooded and starved lubrication conditions for transportation applications. Int J Adv Manuf Technol 87(1):929–939. https://doi.org/10.1007/s00170-016-8531-6

    Article  Google Scholar 

  140. Suárez S, Rosenkranz A, Gachot C, Mücklich F (2014) Enhanced tribological properties of MWCNT/Ni bulk composites – influence of processing on friction and wear behaviour. Carbon 66:164–171. https://doi.org/10.1016/j.carbon.2013.08.054

    Article  Google Scholar 

  141. Ahmad I, Kennedy A, Zhu YQ (2010) Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 269(1):71–78. https://doi.org/10.1016/j.wear.2010.03.009

    Article  Google Scholar 

  142. Lahiri D, Hec F, Thiesse M, Durygin A, Zhang C, Agarwal A (2014) Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribol Int 70:165–169. https://doi.org/10.1016/j.triboint.2013.10.012

    Article  Google Scholar 

  143. Wang H, Xie G, Zhu Z, Ying Z, Zeng Y (2014) Enhanced tribological performance of the multi-layer graphene filled poly(vinyl chloride) composites. Compos A: Appl Sci Manuf 67:268–273. https://doi.org/10.1016/j.compositesa.2014.09.011

    Article  Google Scholar 

  144. Pang W, Ni Z, Wu J, Zhao Y (2018) Investigation of tribological properties of graphene oxide reinforced ultrahigh molecular weight polyethylene under artificial seawater lubricating condition. Appl Surf Sci 434:273–282. https://doi.org/10.1016/j.apsusc.2017.10.115

    Article  Google Scholar 

  145. Cornelio JAC, Cuervo PA, Hoyos-Palacio LM, Lara-Romero J, Toro A (2016) Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel–rail system. J Mater Res Technol 5(1):68–76. https://doi.org/10.1016/j.jmrt.2015.10.006

    Article  Google Scholar 

  146. Sharma AK, Tiwari AK, Dixit AR, Singh RK, Singh M (2018) Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation. Tribol Int 119:99–111. https://doi.org/10.1016/j.triboint.2017.10.036

    Article  Google Scholar 

  147. Xie G, Forslund M, Pan J (2014) Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl Mater Interfaces 6(10):7444–7455. https://doi.org/10.1021/am500768g

    Article  Google Scholar 

  148. Jang I, Joo HG, Jang YH (2016) Effects of carbon nanotubes on electrical contact resistance of a conductive Velcro system under low frequency vibration. Tribol Int 104:45–56. https://doi.org/10.1016/j.triboint.2016.08.019

    Article  Google Scholar 

  149. Mao F, Wiklund U, Andersson AM, Jansson U (2015) Graphene as a lubricant on Ag for electrical contact applications. J Mater Sci 50(19):6518–6525. https://doi.org/10.1007/s10853-015-9212-9

    Article  Google Scholar 

  150. Liu X, Pu J, Wang L, Xue Q (2013) Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications. J Mater Chem A 1(11):3797–3809. https://doi.org/10.1039/C3TA00764B

    Article  Google Scholar 

  151. Zhang Y, Chromik RR (2018) Tribology of self-lubricating metal matrix composites. In: Menezes PL, Rohatgi PK, Omrani E (eds) Self-lubricating composites. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 33–73. https://doi.org/10.1007/978-3-662-56528-5_2

    Chapter  Google Scholar 

  152. Saravanan P, Satyanarayana N, Sinha SK (2013) Self-lubricating SU-8 nanocomposites for microelectromechanical systems applications. Tribol Lett 49(1):169–178. https://doi.org/10.1007/s11249-012-0055-0

    Article  Google Scholar 

  153. Li J, Zeng X, Ren T, Van der Heide E (2014) The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2(3):137–161. https://doi.org/10.3390/lubricants2030137

    Article  Google Scholar 

  154. Yousef S, Visco A, Galtieri G, Nocita D, Espro C (2017) Wear behaviour of UHMWPE reinforced by carbon nanofiller and paraffin oil for joint replacement. Mater Sci Eng C 73:234–244. https://doi.org/10.1016/j.msec.2016.11.088

    Article  Google Scholar 

  155. Meng Y, Ye L, Coates P, Twigg P (2018) In situ cross-linking of poly(vinyl alcohol)/graphene oxide–polyethylene glycol nanocomposite hydrogels as artificial cartilage replacement: intercalation structure, unconfined compressive behavior, and biotribological behaviors. J Phys Chem C 122(5):3157–3167. https://doi.org/10.1021/acs.jpcc.7b12465

    Article  Google Scholar 

Download references

Funding

G.X. and P. L. M. thank the University of Nevada, Reno, startup fund; G.X. also thanks the National Science Foundation (Grant No. CMMI-1923033) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradeep L. Menezes or Guoping Xiong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Tian, S., Menezes, P.L. et al. Carbon solid lubricants: role of different dimensions. Int J Adv Manuf Technol 107, 3875–3895 (2020). https://doi.org/10.1007/s00170-020-05297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05297-8

Keywords

Navigation