Skip to main content
Log in

Review of mechanisms and deformation behaviors in 4D printing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Although 3D printing was invented in 1984, it was not until recent years that it captured the imagination of everyone from industry experts to at-home hobbyists. Three-dimensional printing, also known as additive manufacturing or rapid prototyping, constructs an object by accumulating materials layer by layer. In recent years, 3D printing technology has been dramatically developed with respect to materials, printer, and process, which laid a foundation for 4D printing. Four-dimensional printing is the targeted evolution of the 3D-printed structure, concerning shape, property, and functionality. The object is produced by 3D printing firstly. Then, the object can self-deform, self-assemble, self-disassemble, self-repair, and change property or functionality over time when the external stimuli are imposed on it. This review mainly introduces the stimulus, types of shape-shifting behaviors, mechanisms of deformation, and applications of 4D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tibbits, Skylar, McKnelly, Carrie, Olguin, Carlos, Dikovsky, Daniel, Hirsch, Shai (2014) 4D printing and universal transformation. Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, Los Angeles. pp 539–548

  2. Brooks M (2016) The day the world became 3D. New Sci 232:40–41

    Article  Google Scholar 

  3. Miller R (2014) Additive manufacturing (3D printing): past, present and future. Ind Heat 82:39–43

    Google Scholar 

  4. O’Donnell J, Ahmadkhanlou F, Yoon HS, Washington G (2014) All-printed smart structures: a viable option? SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, California, United States. 905729. https://doi.org/10.1117/12.2045284

  5. Wang SP, Ragan-Kelley J, Matusik W (2013) OpenFab: a programmable pipeline for multi-material fabrication. ACM T Graphic 32:136. https://doi.org/10.1145/2461912.2461993

  6. Li X, Shang J, Wang Z (2017) Intelligent materials: a review of applications in 4D printing. Assembly Autom 37:170–185. https://doi.org/10.1108/AA-11-2015-093

    Article  Google Scholar 

  7. Espalin D, Muse DW, Macdonald E, Wicker RB (2014) 3D printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Tech. 72:963–978. https://doi.org/10.1007/s00170-014-5717-7

    Article  Google Scholar 

  8. Yang Y, Chen Y, Wei Y, Li Y (2016) 3D printing of shape memory polymer for functional part fabrication. Int. J. Adv. Manuf. Tech. 84:2079–2095. https://doi.org/10.1007/s00170-015-7843-2

    Article  Google Scholar 

  9. Seliktar D, Dikovsky D, Napadensky E (2013) Bioprinting and tissue engineering: recent advances and future perspectives. Isr. J. Chem. 53:795–804. https://doi.org/10.1002/ijch.201300084

    Article  Google Scholar 

  10. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Tech. 67:1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  11. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  12. F Momeni, MMHN Seyed, X Liu, J Ni (2017) A review of 4D printing. Mater Design 122:42–79. https://doi.org/10.1016/j.matdes.2017.02.068

  13. Wang X, Rijff BL, Khang G (2015) A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med 11:1403. https://doi.org/10.1002/term.2038

    Article  Google Scholar 

  14. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Design 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  15. Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley Publishing, New York

    Google Scholar 

  16. Monzón MD, Paz R, Pei E, Ortega F, Suárez LA, Ortega Z, Alemán ME, Plucinski T, Clow N (2016) 4D printing: processability and measurement of recovery force in shape memory polymers. Int. J. Adv. Manuf. Tech. 5–8:1827–1836. https://doi.org/10.1007/s00170-016-9233-9

    Article  Google Scholar 

  17. Jin Choi OKWJ (2015) 4D printing technology: a review. 3D Print Addit Manuf 2:159–167. https://doi.org/10.1089/3dp.2015.0039

  18. S Tibbits. (2013). The emergence of “4D printing”. Paper presented at the TED conference

  19. Zhou Y, Huang WM, Kang SF, Wu XL, Lu HB, Fu J, Cui H (2015) From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol 29:4281–4288. https://doi.org/10.1007/s12206-015-0925-0

  20. Pei E (2014) 4D printing: dawn of an emerging technology cycle. Assembly Autom 34:310–314. https://doi.org/10.1108/AA-07-2014-062

    Article  Google Scholar 

  21. Ge Q, Qi HJ, Dunn ML (2013) Active materials by four-dimension printing. Appl. Phys. Lett. 103:68–225. https://doi.org/10.1063/1.4819837

    Article  Google Scholar 

  22. Zhong XK, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10:103–122. https://doi.org/10.1080/17452759.2015.1097054

  23. Campbell TA, Tibbits S, Garrett B (2014) The programmable world. Sci. Am. 311:60–65. https://doi.org/10.1038/scientificamerican1114-60

    Article  Google Scholar 

  24. Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Mater Struct 23:94007. https://doi.org/10.1088/0964-1726/23/9/094007

  25. Pei E (2014) 4D printing—revolution or fad? Assembly Autom 34:123–127. https://doi.org/10.1108/AA-02-2014-014

  26. Tibbits S, Cheung K (2012) Programmable materials for architectural assembly and automation. Assembly Autom 32:216–225. https://doi.org/10.1108/01445151211244348

    Article  Google Scholar 

  27. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. https://doi.org/10.1039/b615954k

    Article  Google Scholar 

  28. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater. Design 33:577–640. https://doi.org/10.1016/j.matdes.2011.04.065

    Article  Google Scholar 

  29. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221. https://doi.org/10.1016/j.polymer.2013.02.023

    Article  Google Scholar 

  30. Menges A, Tibbits S (2012) Design to self-assembly. Archit Des 82:68–73. https://doi.org/10.1002/ad.1381

    Article  Google Scholar 

  31. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16:2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  Google Scholar 

  32. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84:116–121. https://doi.org/10.1002/ad.1710

    Article  Google Scholar 

  33. Sun K, Wei TS, Ahn BY, Seo JY, Shen JD, Lewis JA (2013) 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25:4539–4543. https://doi.org/10.1002/adma.201301036

    Article  Google Scholar 

  34. Hardin JO, Ober TJ, Valentine AD, Lewis JA (2015) 3D printing: microfluidic printheads for multimaterial 3D printing of viscoelastic inks (Adv. Mater. 21/2015). Adv. Mater. 27:3278. https://doi.org/10.1002/adma.201500222

  35. Zhou J, Sheiko SS (2016) Reversible shape-shifting in polymeric materials. J Polym Sci B Polym Phys 54:1365–1380. https://doi.org/10.1002/polb.24014

    Article  Google Scholar 

  36. Gong XL, Xiao YY, Pan M, Kang Y, Li BJ, Zhang S (2016) pH- and thermal-responsive multi-shape memory hydrogel. ACS Appl Mater Interfaces 8:27432–27437. https://doi.org/10.1021/acsami.6b09605

    Article  Google Scholar 

  37. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270. https://doi.org/10.1038/nature08863

    Article  Google Scholar 

  38. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381. https://doi.org/10.1039/B922943D

    Article  Google Scholar 

  39. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50:3–33. https://doi.org/10.1016/j.progpolymsci.2015.04.002

    Article  Google Scholar 

  40. Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, Lu HB, Tang C, Ding Z, Zhang JL (2013) Shaping tissue with shape memory materials. Adv. Drug Deliv. Rev. 65:515–535. https://doi.org/10.1016/j.addr.2012.06.004

    Article  Google Scholar 

  41. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 19:9952. https://doi.org/10.1007/s10965-012-9952-z

    Article  Google Scholar 

  42. Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6:4403–4406. https://doi.org/10.1039/c0sm00236d

    Article  Google Scholar 

  43. Yu K, Xie T, Leng J, Ding Y, Qi HJ (2012) Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8:5687–5695. https://doi.org/10.1039/C2SM25292A

    Article  Google Scholar 

  44. Thérien-Aubin H, Wu ZL, Nie Z, Kumacheva E (2013) Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 135:4834–4839. https://doi.org/10.1021/ja400518c

    Article  Google Scholar 

  45. Li H, Gao X, Luo Y (2016) Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks. Soft Matter 12:3226. https://doi.org/10.1039/c6sm00185h

    Article  Google Scholar 

  46. Z Long (2015) Lu Bingheng: let 3D print more intelligent. D Manuf Ind 4:22–24

  47. Behl M, Lendlein A (2010) Triple-shape polymers. J Mater Chem 20:3335–3345. https://doi.org/10.1039/b922992b

    Article  Google Scholar 

  48. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50:79–120. https://doi.org/10.1016/j.progpolymsci.2015.04.001

    Article  Google Scholar 

  49. Oxman N (2011) Variable property rapid prototyping. Virtual Phys Prototyp 6:3–31. https://doi.org/10.1080/17452759.2011.558588

  50. S Miyashita, SP Guitron, M Ludersdorfer, CR Sung, DL Rus (2015) An untethered miniature origami robot that self-folds, walks, swims, and degrades. 2015 IEEE International Conference on Robotics and Automation (ICRA), USA. https://doi.org/10.1109/ICRA.2015.7139386

  51. Mao Y, K Y, Isakov MS, Wu J, Dunn ML, Jerry QH (2015) Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep.-UK 5:13616. https://doi.org/10.1038/srep13616

    Article  Google Scholar 

  52. Yu K, Dunn ML, Qi HJ (2015) Digital manufacture of shape changing components. Extreme Mech Lett 4:9–17. https://doi.org/10.1016/j.eml.2015.07.005

  53. Kuksenok O, Balazs AC (2015) Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Mater Horiz 3:53–62. https://doi.org/10.1039/C5MH00212E

  54. Bakarich SE, Gorkin R, Panhuis MIH, Spinks GM (2015) 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Comm. 36:1211–1217. https://doi.org/10.1002/marc.201500079

    Article  Google Scholar 

  55. Sydney GA, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat. Mater. 15:413–418. https://doi.org/10.1038/nmat4544

    Article  Google Scholar 

  56. Wu J, Yuan C, Ding Z, Michael I, Mao Y, Wang T, Dunn ML, Qi HJ (2016) Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep.-UK 6:24224. https://doi.org/10.1038/srep24224

    Article  Google Scholar 

  57. Jacobsen M (2016) Clearing the way for pivotal 21st-century innovation. SensePublishers, Rotterdam

    Book  Google Scholar 

  58. S Naficy, R Gately, R Gorkin, H Xin, GM Spinks (2017) 4D printing of reversible shape morphing hydrogel structures. Macromolecular Materials & Engineering 302. https://doi.org/10.1002/mame.201600212

  59. Nadgorny M, Xiao Z, Chen C, Connal LA (2016) 3D-printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl. Mater. Inter. 8. https://doi.org/10.1021/acsami.6b07388

  60. Raviv D, Zhao W, Mcknelly C, Papadopoulou A, Kadambi A, Shi B, Hirsch S, Dikovsky D, Zyracki M, Olguin C (2014) Active printed materials for complex self-evolving deformations. Sci Rep 4:7422. https://doi.org/10.1038/srep07422

    Article  Google Scholar 

  61. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol. 34:746–756. https://doi.org/10.1016/j.tibtech.2016.03.004

    Article  Google Scholar 

  62. Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52. https://doi.org/10.1126/science.1229495

    Article  Google Scholar 

  63. Jamal M, Kadam SS, Xiao R, Jivan F, Onn TM, Fernandes R, Nguyen TD, Gracias DH (2013) Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv. Healthc. Mater. 2:1142–1150. https://doi.org/10.1002/adhm.201200458

    Article  Google Scholar 

  64. Dimitri K, Manuel S, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6:8643. https://doi.org/10.1038/ncomms9643

    Article  Google Scholar 

  65. Quan Z, Z Kai GH (2016) Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep 6:22431. https://doi.org/10.1038/srep22431

    Article  Google Scholar 

  66. Richards DJ, Tan Y, Jia J, Yao H, Mei Y (2013) 3D printing for tissue engineering. Isr. J. Chem. 53:805–814. https://doi.org/10.1002/ijch.201300086

    Article  Google Scholar 

  67. Bogue R (2013) 3D printing: the dawn of a new era in manufacturing? Assembly Autom. 33:307–311. https://doi.org/10.1108/AA-06-2013-055

    Article  Google Scholar 

  68. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater. Today 16:496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Article  Google Scholar 

  69. Wilhelm S, Curbach M (2015) Review of possible mineral materials and production techniques for a building material on the moon. Struct. Concrete 15:419–428. https://doi.org/10.1002/suco.201300088

    Article  Google Scholar 

  70. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928. https://doi.org/10.1007/s11665-014-0958-z

  71. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyping J. 19:353–364. https://doi.org/10.1108/RPJ-12-2011-0127

    Article  Google Scholar 

  72. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421. https://doi.org/10.1126/science.1070821

    Article  Google Scholar 

  73. Li J (2010) Thermomechanical characterization of environmentally conditioned shape memory polymer using nanoindentation. Proc SPIE Int Soc Opt Eng 7644:1555–1561. https://doi.org/10.1117/12.846974

    Article  Google Scholar 

  74. Lendlein A, Kelch S (2005) Shape-memory polymers as stimuli-sensitive implant materials. Clin Hemorheol Micro 32:105–116

  75. Chua CK, Yeong WY (2015) Bioprinting: principles and applications. World Scientific, Singapore

    Book  Google Scholar 

  76. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat. Protoc. 11:1775–1781. https://doi.org/10.1038/nprot.2016.123

    Article  Google Scholar 

  77. Jung JP, Bhuiyan DB, Ogle BM (2016) Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterials Research 20:27. https://doi.org/10.1186/s40824-016-0074-2

    Article  Google Scholar 

  78. Visser J, FPW M, Jeon JE (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications. 6:6933. https://doi.org/10.1038/ncomms7933

    Article  Google Scholar 

  79. Stoychev G, Puretskiy N, Ionov L (2011) Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7:3277–3279. https://doi.org/10.1039/C1SM05109A

    Article  Google Scholar 

  80. He H, Guan J, Lee JL (2006) An oral delivery device based on self-folding hydrogels. J Control Release Official Journal of the Controlled Release Society 110:339–346. https://doi.org/10.1016/j.jconrel.2005.10.017

  81. Sun L, Huang WM (2010) Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Materials & Design (1980–2015) 31:2684–2689. https://doi.org/10.1016/j.matdes.2009.11.036

    Article  Google Scholar 

  82. Anand LAME, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: formulation. Int. J. Plasticity 25:1474–1494. https://doi.org/10.1016/j.ijplas.2008.11.004

    Article  MATH  Google Scholar 

  83. Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18:2428–2435. https://doi.org/10.1002/adfm.200701049

    Article  Google Scholar 

  84. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263. https://doi.org/10.1016/j.biomaterials.2007.01.030

    Article  Google Scholar 

  85. G Qi, SA Hosein, L Howon, CK Dunn, NX Fang, ML Dunn (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep.-UK 6: 31110. doi: https://doi.org/10.1038/srep31110

  86. Bodaghi M, Damanpack AR, Liao WH (2016) Self-expanding/shrinking structures by 4D printing. Smart Mater Struct 25. https://doi.org/10.1088/0964-1726/25/10/105034

  87. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Comm. 38:1600628. https://doi.org/10.1002/marc.201600628

    Article  Google Scholar 

  88. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28:4449. https://doi.org/10.1002/adma.201503132

    Article  Google Scholar 

  89. J Rossiter, P Walters, B Stoimenov. Printing 3D dielectric elastomer actuators for soft robotics. SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, California, United States. pp 72870H-72870H-10. https://doi.org/10.1117/12.815746

  90. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwã Diauer R (2014) 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26:149–161. https://doi.org/10.1002/adma.201303349

    Article  Google Scholar 

  91. Ahn SH, Lee KT, Kim HJ, Wu R, Kim JS, Song SH (2012) Smart soft composite: an integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. Int J Precis Eng Man 13:631–634. https://doi.org/10.1007/s12541-012-0081-8

  92. Chu WS, Lee KT, Song SH, Han MW, Lee JY, Kim HS, Kim MS, Park YJ, Cho KJ, Ahn SH (2012) Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Man 13:1281–1292. https://doi.org/10.1007/s12541-012-0171-7

  93. S Mondal JLH (2006) Temperature stimulating shape memory polyurethane for smart clothing. Indian J. Fibre Text. 31:66–71

    Google Scholar 

Download references

Funding

The paper was financially supported by the National Natural Science Foundations of China (Grant Number 21374008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Zhang, X., Liu, Y. et al. Review of mechanisms and deformation behaviors in 4D printing. Int J Adv Manuf Technol 105, 4633–4649 (2019). https://doi.org/10.1007/s00170-019-03871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03871-3

Keywords

Navigation