Skip to main content
Log in

Tube measurement based on stereo-vision: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Many advances have been made in stereo-vision-based tube measurement. This approach is characterised by its accuracy, level of automation, non-contact nature, reliability, simplicity of operation and speed. Many studies have indicated that multi-stereo-vision technology can solve the occlusion problem and be used to efficiently and accurately measure complicated tubes. Increasing demand for fast and accurate quality control of tubes has significantly improved the confidence of users of this technology. The purpose of this paper is to review the research papers published in the tube measurement based on stereo-vision research area. Following a detailed introduction, this paper first discusses the measurement problem and requirements and then reviews the current state of academic research on the key techniques, including three-dimensional (3D) reconstruction, parameter calculation and accuracy verification. This is followed by a summary and conclusion. This paper’s aim is to help interested researchers find the suitable and accurate 3D reconstruction method of different kinds of tubes in the literature and set up a tube measurement system quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Q, Wang C (2010) Pipe-assembly approach for aero-engines by modified particle swarm optimization. Assembly Auto 30(4):365–377. doi:10.1108/01445151011075825

    Article  Google Scholar 

  2. Zhou C, Yin Y (2010) Pipe assembly planning algorithm by imitating human imaginal thinking. Assembly Auto 30(1):66–74. doi:10.1108/01445151011016082

    Article  Google Scholar 

  3. He Y, Heng L, Zhang Z, Mei Z, Jing L, Guangjun L (2012) Advances and trends on tube bending forming technologies. Chinese J Aeronaut 25(1):1–12. doi:10.1016/S1000-9361(11)60356-7

    Article  Google Scholar 

  4. Wan B, Ning R, Liu J, Tang C (2007) Architecture of cable harness and tube assembly planning system in virtual environment. Int J Comput Integ M 13(08):1579–1585

    Google Scholar 

  5. Grimson WEL, Lozano-Perez T, Noble N, White SJ (1993) An automatic tube inspection system that finds cylinders in range data. Computer Vision and Pattern Recognition Conference. CVPR, New York, NY, pp. 446–452. doi:10.1109/CVPR.1993.341092

  6. Wei Y-F, Thornton AC (2000) Tube production and assembly systems: the impact of compliance and variability on yield. In Proc. ASME Des. Automation Conf. Baltimore, MD, pp. DETC2000/DAC-14271

  7. Bösemann W (2011) Industrial photogrammetry: challenges and opportunities. Videometrics, Range Imaging, and Applications XI, edited by Fabio Remondino, Mark R. Shortis, Proc. of SPIE Vol. 8085, 80850H, pp. 1–10. doi:10.1117/12.889170

  8. Opton (2016) [December 20, 2016]. Available from: http://www.opton.co.jp/en/products/3d/pipe3d-profiler-series/

  9. Available from: http://www.advancedtubular.com/vtube-laser.htm

  10. Available from: http://www.tezet.com

  11. Lee I-K (2000) Curve reconstruction from unorganized points. Comput Aided Geom D 17(2):161–177. doi:10.1016/S0167-8396(99)00044-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawashima K, Kanai S, Date H (2014) As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing. J Comput Des Eng 1(1):13–26. doi:10.7315/JCDE.2014.002

    Google Scholar 

  13. Kawashima K, Kanai S, Date H (2013) Automatic recognition of piping system from laser scanned point clouds using normal-based region growing. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, II-5 W 2:121–126. doi:10.5194/isprsannals-II-5-W2-121-2013

  14. Lee J, Son H, Kim C, Kim C (2013) Skeleton-based 3D reconstruction of as-built pipelines from laser-scan data. Automat Constr 35:199–207. doi:10.1016/j.autcon.2013.05.009

    Article  Google Scholar 

  15. Kumar GS, Kalra PK, Dhande SG (2004) Curve and surface reconstruction from points: an approach based on self-organizing maps. Appl Soft Comput 5(1):55–66. doi:10.1016/j.asoc.2004.04.003

    Article  Google Scholar 

  16. Goulette F (1997) Automatic CAD modeling of industrial pipes from range images. Proc Int Conf 3D Digital Imaging and Modeling. Los Alamitos, CA, pp. 229–233. doi:10.1109/IM.1997.603870

  17. Bauer U, Polthier K (2007) Parametric reconstruction of bent tube surfaces. Proc Int Conf the CyberWorld: workshop on new advances in shape analysis and geometric modeling. CW07, New York, pp. 465–474. doi: 10.1109/CW.2007.59

  18. Bösemann W (2005) Advances in photogrammetric measurement solutions. Comput Ind 56(8):886–893. doi:10.1016/j.compind.2005.05.014

    Article  Google Scholar 

  19. Boesemann W (2003) Online, offline, realtime: recent developments in industrial photogrammetry. Proceedings of the SPIE, Videometrics VII, vol 5013: 87–94. doi:10.1117/12.47309220

  20. Boesemann W, Schneider CT (2001) Online 3D measurement using inverse photogrammetry, videometrics and optical methods for 3D shape measurement Proceedings of the SPIE, vol 4309, pp 288–293. doi:10.1117/12.41088521

  21. Boesemann W (2003) Photogrammetry in the line: recent developments in industrial photogrammetry. Proceedings of the SPIE, vol 5144: 758–765. doi:10.1117/12.499418

  22. Boesemann W (2016) Industrial photogrammetry-accepted metrology tool or exotic niche. ISPRS Archives, XLI-B5: 15–24. doi:10.5194/isprs-archives-XLI-B5-15-2016

  23. Luhmann T (2010) Close range photogrammetry for industrial applications. ISPRS J Photogramm 65(6):558–569. doi:10.1016/j.isprsjprs.2010.06.003

    Article  Google Scholar 

  24. Uffenkamp V (1993) State of the art of high precision industrial photogrammetry. Proc., 3rd Int. Workshop on Accelerator Alignment. Berlin, pp 153–165

  25. Kim GB (2004) Stereo vision system on machine tool for automated reconstruction of surface morphology with depth discontinuity. Int J Adv Manuf Technol 24:433–439. doi:10.1007/s00170-003-1781-0

    Article  Google Scholar 

  26. Lei N, Soshi M (2016) Vision-based system for chatter identification and process optimization in high-speed milling. Int J Adv Manuf Technol:1–13. doi:10.1007/s00170-016-9770-2

  27. Connolly C (2003) Using machine vision in assembly applications. Assembly Auto 23(3):233–239. doi:10.1108/01445150310486486

    Article  Google Scholar 

  28. Samper D, Santolaria J, Brosed FJ, Aguilar JJ (2013) A stereo-vision system to automate the manufacture of a semitrailer chassis. Int J Adv Manuf Technol 67:2283–2292. doi:10.1007/s00170-012-4649-3

    Article  Google Scholar 

  29. Fraser C, Brown D (1986) Industrial photogrammetry: new developments and recent applications. Photogramm Rec 12(68):197–217. doi:10.1111/j.1477-9730.1986.tb00557.x

    Article  Google Scholar 

  30. Davies ER (2012) Computer and machine vision: theory, algorithms, practicalities. Academic Press

  31. Pérez L, Rodríguez Í, Rodríguez N, Usamentiaga R, García DF (2016) Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3):335. doi:10.3390/s16030335

    Article  Google Scholar 

  32. Bösemann W (1996) The optical tube measurement system OLM photogrammetric methods used for industrial automation and process control. Int. Arch. Photogrammetry Remote Sensing 31:55–58

  33. Sinnreich K, Bösemann W (1994) Optical 3D tube measurement system for quality control in industry. Proc. SPIE 2249, Automated 3D and 2D Vision 2249: 192–199. doi:10.1117/12.196117

  34. Loser R, Luhmann T (1993) The programmable optical 3D measuring system POM—applications and performance. Comm. V, ISPRS Congress. Washington D.C, vol part5: 533–540

  35. Wade P, Moran D, Graham J, Jackson CB (1997) Robust and accurate 3D measurement of formed tube using trinocular stereo vision. The British Machine Vision Conference. BMVC, Essex, UK, pp 1–10

  36. Jin P, Liu JH, Liu S, Wang X, Qiao H, Qiao H (2016) Automatic multi-stereo-vision reconstruction method of complicated tubes for industrial assembly. Assembly Auto 36(4):362–375. doi:10.1108/AA-10-2015-078

    Article  Google Scholar 

  37. Lee WS, Poston T (1997) Rapid 3D tube reconstruction from nearby views. Fifth International Conference in Central Europe in Computer Graphics and Visualization

  38. Veldhuis H, Vosselman G (1998) The 3D reconstruction of straight and curved pipes using digital line photogrammetry. ISPRS-J Photogramm Remote Sens 53(1):6–16. doi:10.1016/S0924-2716(97)00031-2

    Article  Google Scholar 

  39. Vosselman G, Tangelder JW (2000) 3D reconstruction of industrial installations by constrained fitting of CAD models to images. In: Mustererkennung, G. Sommer, N. Krueger, Ch. Perwass (Eds.), series Informatik aktuell, Springer Verlag: 285–292. doi: 10.1007/978-3-642-59802-9_36

  40. Tangelder JW, Vosselman G, Van Den Heuvel FA (2000) Object-oriented measurement of pipe systems using edge matching and CSG models with constraints. IAPRS, Amsterdam 32:132–139

    Google Scholar 

  41. Tangelder JW, Ermes P, Vosselman G, Van Den Heuvel FA (2003) CAD-based photogrammetry for reverse engineering of industrial installations. Computer - Aided Civ Inf 18(4):264–274. doi:10.1111/1467-8667.00316

    Article  Google Scholar 

  42. Tangelder JW, Ermes P, Vosselman G, van den Heuvel FA (1999) Measurement of curved objects using gradient based fitting and CSG models. IAPRS, Thessaloniki 32:23–30

    Google Scholar 

  43. Jones M, Chapman D, Hamid A, Deacon A (1996) Close range photogrammetry using geometric primitives for efficient CAD modelling of industrial plant. Int. Arch. Photogrammetry Remote Sensing 31:284–289

  44. Navab N, Appel M (2006) Canonical representation and multi-view geometry of cylinders. Int J Comput Cision 70(2):133–149. doi:10.1007/s11263-006-7935-4

    Article  Google Scholar 

  45. Navab N (2002) Canonical representation and three view geometry of cylinders. Int Arch Photogramm Remote Sens Spatial Inf Sci Comm 34(3/A):218–224

  46. Luhmann T, Robson S, Kyle S, Boehm J(2014) Close-range photogrammetry and 3D imaging: Walter de Gruyter: 637–642

  47. Luhmann T, Fraser C, Maas HG (2016) Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J Photogramm 115:37–46. doi:10.1016/j.isprsjprs.2015.10.006

    Article  Google Scholar 

  48. Gruen A (1997) Fundamentals of videogrammetry—a review. Hum Movement Sci 16(2–3):155–187. doi:10.1016/S0167-9457(96)00048-6

    Article  Google Scholar 

  49. Ding G, Jiang L, Qin S, Zhu S, Ma S (2012) Computer-integrated manufacturing system for tube bending. Int J Comput Integ M 25(11):1059–1068. doi:10.1080/0951192X.2012.684710

    Article  Google Scholar 

  50. Liu S, Jin P, Liu J, Wang X, Sun P (2016) Accurate measurement method for tube’s endpoints based on machine vision. Chin J Mech Eng-En:1–12. doi:10.3901/CJME.2016.0516.066

  51. Woods PW, Taylor CJ, Cooper DH, Dixon R (1987) The use of geometric and grey-level models for industrial inspection. Pattern Recogn Lett 5(1):11–17. doi:10.1016/0167-8655(87)90021-3

    Article  Google Scholar 

  52. Hong L, Wan Y, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Analysis and Machine Intelligence 20(8):777–789. doi:10.1109/34.709565

    Article  Google Scholar 

  53. Canny J (1987) A computational approach to edge detection. IEEE Trans Pattern Analysis and Machine Intelligence 6:679–698. doi:10.1109/TPAMI.1986.4767851

    Google Scholar 

  54. Steger C, Ulrich M, Wiedemann C (2008) Machine vision algorithms and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weilheim

    Google Scholar 

  55. Davies ER (1990) Machine vision: theory, algorithms, practicalities. Academic Press, London

  56. Shrivakshan G, Chandrasekar C (2012) A comparison of various edge detection techniques used in image processing. IJCSI International Journal of Computer Science Issues 9(5):272–276

    Google Scholar 

  57. El-Hakim SF, Pizzi NJ (1993) Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering. Opt Eng 32(9):2201–2215. doi:10.1117/12.145073

    Article  Google Scholar 

  58. Wilkin A, ROBUST 3D (1992) Object representation by linear features. Int Arch Photogramm Remote Sensing XXIX B5:659–666

    Google Scholar 

  59. Mulawa D (1989) Estimation and photogrammetric treatment of linear features. Doctoral thesis, Purdue University

  60. Papadimitriou DV, Dennis TJ (1996) Epipolar line estimation and rectification for stereo image pairs. IEEE Trans Image Process 5(4):672–676. doi:10.1109/83.491345

    Article  Google Scholar 

  61. Loop C, Zhang Z (1999) Computing rectifying homographies for stereo vision. Computer Vision and Pattern Recognition Proc Computer Vision and Pattern Recognition:125–131. doi:10.1109/cvpr.1999.786928

  62. Zabih R, Woodfill J (1994) Non-parametric local transforms for computing visual correspondence. Third European Comf Computer Vision:151–158. doi:10.1007/bfb0028345

  63. Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc Royal Soc London B 204:301–328. doi:10.1098/rspb.1979.0029

    Article  Google Scholar 

  64. Chen HY, Lee IK, Leopoldseder S, Pottmann H, Randrup T, Wallner J (1999) On surface approximation using developable surfaces. Graph Models Image Process 61(2):110–124. doi:10.1006/gmip.1999.0487

    Article  MATH  Google Scholar 

  65. Pottmann H, Randrup T (1998) Rotational and helical surface approximation for reverse engineering. Computing 60(4):307–322. doi:10.1007/bf02684378

    Article  MathSciNet  MATH  Google Scholar 

  66. Pottmann H, Lee I, Randrup T (1998) Reconstruction of kinematic surfaces from scattered data. In Proceedings of symposium on geodesy for geotechnical and structural engineering: 483–488

  67. Pottmann H, Chen H, Lee I (1998) Approximation by profile surfaces 1. The mathematics of surfaces VII: 17–36

  68. Amenta N, Bern M, Kamvysselis M (1998) A new Voronoi-based surface reconstruction algorithm. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques: 415–421. doi:10.1145/280814.280947

  69. Bajaj CL, Bernardini F, Xu G (1997) Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica 19(1–2):243–261. doi:10.1007/pl00014418

    Article  MathSciNet  Google Scholar 

  70. Yu Y (1999) Surface reconstruction from unorganized points using self-organizing neural networks. In IEEE Visualization 99: 61–64

  71. Hoppe H, De Rose T, Duchamp T, McDonald J, Stuetzle W (1993) Mesh optimization. Proceedings of the 20th annual conference on Computer graphics and interactive techniques: 19–26. doi:10.1145/166117.166119

  72. Fang L, Gossard DC (1992) Fitting 3D curves to unorganized data points using deformable curves. Vis Comput:535–543. doi:10.1007/978-4-431-68204-2_33

  73. Taubin G, Ronfard R (1996) Implicit simplicial models for adaptive curve reconstruction. IEEE Trans Pattern Anal Mach Intell 18(3):321–325. doi:10.1109/34.485559

    Article  Google Scholar 

  74. Ferley E, Cani-Gascuel MP, Attali D (1997) Skeletal reconstruction of branching shapes. Comput Graph Forum 16(5):283–293. doi:10.1111/1467-8659.00195

    Article  Google Scholar 

  75. McLain DH (1974) Drawing contours from arbitrary data points. Comput J 17(4):318–324. doi:10.1093/comjnl/17.4.318

    Article  MathSciNet  Google Scholar 

  76. McLain DH (1976) Two dimensional interpolation from random data. Comput J 19(2):178–181. doi:10.1093/comjnl/19.2.178

    Article  MathSciNet  MATH  Google Scholar 

  77. Lancaster P (1979) Moving weighted least-squares methods. Polynomial and spline approximation. Springer Nature: 103–120. doi:10.1007/978-94-009-9443-0_7

  78. Levin D (1998) The approximation power of moving least-squares. Mathematics of Computation of the American Mathematical Society. 1998;67(224):1517–31. doi:10.1090/s0025-5718-98-00974-0

  79. Levin D (2004) Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization Mathematics and Visualization:37–49. doi:10.1007/978-3-662-07443-5_3

  80. Bauer U, Polthier K (2009) Generating parametric models of tubes from laser scans. Comput Aided Design 41(10):719–729. doi:10.1016/j.cad.2009.01.002

    Article  Google Scholar 

  81. Lee IK, Kim KJ (2004) Shrinking: another method for surface reconstruction. In: Proceedings of the Geometric Modeling and Processing: 259–266 doi:10.1109/gmap.2004.1290047

  82. Barhak J, Fischer A (2001) Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE T Vis Comput Gr 7(1):1–16. doi:10.1109/2945.910817

    Article  MATH  Google Scholar 

  83. Baader A, Hirzinger G (1994) A self-organizing algorithm for multisensory surface reconstruction. International Conf. on Robotics and Intelligent Systems. IROS: 81–88 doi:10.1109/iros.1994.407406

  84. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480

    Article  Google Scholar 

  85. Palenichka RM, Zaremba MB (2002) Multi-scale model-based skeletonization of object shapes using self-organizing maps. Int’l Conference on Pattern Recognition ICPR 1:143–146. doi:10.1109/icpr.2002.1044633

    Google Scholar 

  86. Hebert M, Ponce J (1982) A new method for segmenting 3-D scenes into primitives. Proc Intl Joint Conference on Pattern Recognition. New York, pp 836–838

  87. Liang P, Todhunter JS. Representation and recognition of surface shapes in range images: a differential geometry approach. Comput Vision, Graphics Image Process 52(1):78–109 doi:10.1016/0734-189x(90)90124-e

  88. Rabbani T, Van Den Heuvel F, Vosselmann G (2006) Segmentation of point clouds using smoothness constraint. ISPRS Archives 36(5):248–253

    Google Scholar 

  89. Lukács G, Martin R, Marshall D (1998) Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. European Conference on Computer Vision. ECCV, Freiburg, Germany: 671–686. doi:10.1007/bfb0055697

  90. Schwermann R (1994) Automatic image orientation and object reconstruction using straight lines in close range photogrammetry. Int. Arch. Photogrammetry Remote Sensing 30:349–56

  91. Hartley RI (1997) Lines and points in three views and the trifocal tensor. Int J Comput Vis 22(2):125–140. doi:10.1023/A:1007936012022

    Article  Google Scholar 

  92. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE T Pattern Anal 21(5):476–480. doi:10.1109/34.765658

    Article  Google Scholar 

  93. Gander W, Strebel R, Golub GH (1995) Fitting of circles and ellipses least squares solution. SVD and Signal Processing 3:349–356. doi:10.1016/b978-044482107-2/50036-4

    Article  MATH  Google Scholar 

  94. Ouellet JN, Hébert P (2009) Precise ellipse estimation without contour point extraction. Mach vision Appl 21(1):59–67. doi:10.1007/s00138-008-0141-3

    Article  Google Scholar 

  95. Quan L (1996) Conic reconstruction and correspondence from two views. IEEE T Pattern Anal 18(2):151–160. doi:10.1109/34.481540

    Article  Google Scholar 

  96. Usabiaga J, Erol A, Bebis G, Boyle R, Twombly X (2009) Global hand pose estimation by multiple camera ellipse tracking. Mach Vision Appl 21(1):1–15. doi:10.1007/s00138-008-0137-z

    Article  Google Scholar 

  97. Bergamasco F, Cosmo L, Albarelli A, Torsello A (2012) A robust multi-camera 3D ellipse fitting for contactless measurements. 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission. 3DIMPVT, Zurich, Switzerland, pp 168–175 doi:10.1109/3dimpvt.2012.22

  98. Jin P, Liu JH, Liu SL, Zhang T, Sun P (2014) Measuring method of pipeline endpoints based on two-dimensional point-target. Comput Integr Manuf Syst 20(11):2758–2766

    Google Scholar 

  99. Shojaei R, Sohrabi M, Amjadi M (2010) Statistical measurement system analysis of Ruston TA1750 gas turbine 1st stage nozzle. Adv Math Comput Meth pp:29–33

  100. Rahmati SHA, Amalnick MS (2015) Fuzzy gauge capability (Cg and Cgk) through Buckley approach. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 9(8):14891489.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoli Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, J., Jin, P. et al. Tube measurement based on stereo-vision: a review. Int J Adv Manuf Technol 92, 2017–2032 (2017). https://doi.org/10.1007/s00170-017-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0254-9

Keywords

Navigation