Skip to main content
Log in

An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

It is important to improve the absolute positional accuracy of the industrial robots used in the robotic drilling and riveting systems. The purpose of this paper is to propose a method to compensate for the absolute positional errors of the industrial robots. Firstly, the spatial similarity of the positional errors is qualitatively and quantitatively analyzed using semivariogram function and experiments. Secondly, the positional error model is established based on the spatial similarity, and a linear unbiased optimal estimation method of the target positional errors is proposed. Finally, experiments are used to verify the proposed methods with measuring the robot’s positional errors after compensation. The analysis shows that there is a spatial similarity of positional errors in the robot joint space, which can be used to establish error model and to estimate the target’s positional errors. Experimental results show that the proposed method can reduce the maximum absolute positional errors by 84.08 % from 2.01 to 0.32 mm, which can meet the accuracy requirements of the robotic drilling and riveting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeVlieg R, Sitton K, Feikert E, Inman J (2002) Once (one-sided cell end effector) robotic drilling system. Technical report, SAE Technical Paper

  2. Tian W, Zhou Z, Liao W (2016) Analysis and investigation of a rivet feeding tube in an aircraft automatic drilling and riveting system. Int J Adv Manuf Technol 82(5–8):973–983

    Article  Google Scholar 

  3. Zhan Q, Wang X (2012) Hand–eye calibration and positioning for a robot drilling system. Int J Adv Manuf Technol 61(5–8):691–701

    Article  Google Scholar 

  4. Zhu W, Mei B, Yan G, Ke Y (2014) Measurement error analysis and accuracy enhancement of 2d vision system for robotic drilling. Robot Comput-Integr Manuf 30(2):160–171

    Article  Google Scholar 

  5. Elatta A, Gen LP, Zhi FL, Daoyuan Y, Fei L (2004) An overview of robot calibration. Inf Technol J 3(1):74–78

    Article  Google Scholar 

  6. Roth ZS, Mooring B, Ravani B (1987) An overview of robot calibration. IEEE J RobotAutom 3(5):377–385

    Google Scholar 

  7. Denavit J (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J Appl Mech 22:215– 221

    MathSciNet  MATH  Google Scholar 

  8. Hayati S, Mirmirani M (1985) Improving the absolute positioning accuracy of robot manipulators. J Robot Syst 2(4):397– 413

    Article  Google Scholar 

  9. Stone HW (1987) Kinematic modeling, identification, and control of robotic manipulators, vol 29. Springer Science & Business Media

  10. Zhuang H, Roth ZS, Hamano F (1992) A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans Robot Autom 8(4):451–463

    Article  Google Scholar 

  11. Okamura K, Park F (1996) Kinematic calibration using the product of exponentials formula. Robotica 14(04):415–421

    Article  Google Scholar 

  12. Gong C, Yuan J, Ni J (2000) Nongeometric error identification and compensation for robotic system by inverse calibration. Int J Mach Tools Manuf 40(14):2119–2137

    Article  Google Scholar 

  13. Kim DH, Cook KH, Oh JH (1991) Identification and compensation of a robot kinematic parameter for positioning accuracy improvement. Robotica 9:99–105

    Article  Google Scholar 

  14. Zak G, Benhabib B, Fenton R, Saban I (1994) Application of the weighted least squares parameter estimation method to the robot calibration. J Mech Des 116(3):890–893

    Article  Google Scholar 

  15. Ginani LS, Motta JMS (2011) Theoretical and practical aspects of robot calibration with experimental verification. J Braz Soc Mech Sci Eng 33(1):15–21

    Article  Google Scholar 

  16. Lightcap C, Hamner S, Schmitz T, Banks S (2008) Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration. IEEE Trans Robot 24(2):452– 456

    Article  Google Scholar 

  17. Motta JMS (2001) Robot calibration using a 3d vision-based measurement system with a single camera. Robot Comput Integrat Manuf 17(6):487–497

    Article  Google Scholar 

  18. Nubiola A, Bonev IA (2013) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integr Manuf 29(1):236–245

    Article  Google Scholar 

  19. Omodei A, Legnani G, Adamini R (2001) Calibration of a measuring robot: experimental results on a 5 DOF structure. J Robot Syst 18(5):237–250

    Article  MATH  Google Scholar 

  20. Park IW, Lee BJ, Cho SH, Hong YD, Kim JH (2012) Laser-based kinematic calibration of robot manipulator using differential kinematics. IEEE/ASME Trans Mechatron 17(6):1059–1067

    Article  Google Scholar 

  21. Jang JH, Kim SH, Kwak YK (2001) Calibration of geometric and non-geometric errors of an industrial robot. Robotica 19(03):311–321

    Article  Google Scholar 

  22. Zhong X, Lewis J, N-Nagy FL (1996) Inverse robot calibration using artificial neural networks. Eng Appl Artif Intell 9(1):83–93

    Article  Google Scholar 

  23. DeVlieg R, Szallay T (2010) Applied accurate robotic drilling for aircraft fuselage. SAE Int J Aerospace 3(1):180–186

    Article  Google Scholar 

  24. Judd RP, Knasinski AB (1990) A technique to calibrate industrial robots with experimental verification. IEEE Trans Robot Autom 6(1):20–30

    Article  Google Scholar 

  25. Renders JM, Rossignol E, Becquet M, Hanus R (1991) Kinematic calibration and geometrical parameter identification for robots. IEEE Trans Robot Autom 7(6):721–732

    Article  Google Scholar 

  26. Shiakolas P, Conrad K, Yih T (2002) On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. Int J Modell Simul 22(4):245–254

    Google Scholar 

  27. Veitschegger WK, Wu CH (1986) Robot accuracy analysis based on kinematics. IEEE J Robot Autom 2(3):171–179

    Article  Google Scholar 

  28. Jian X, Olea RA, Yu YS (1996) Semivariogram modeling by weighted least squares. Comput Geosci 22(4):387–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Tian, W., Li, D. et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system. Int J Adv Manuf Technol 88, 2745–2755 (2017). https://doi.org/10.1007/s00170-016-8975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8975-8

Keywords

Navigation