Skip to main content
Log in

Influence of fixed abrasive configuration on the polishing process of silicon wafers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Lapping and polishing with fixed abrasives is an efficient method to flatten wafers and obtain mirror surface finish. One of the most concerned things is abrasive configuration for polishing pads in research. Researching on pad’s abrasive configuration will help get better wafer surface quality. For abrasive trajectories can heavily affect wafer surface flatness and roughness during lapping and polishing process, the present work was conducted to study the relationship among abrasive configuration, trajectory distribution, material removal, and its influence on wafer surface quality. For this purpose, an abrasive configuration method was applied by adopting a written Matlab program to give set values of the radial distance and the initial angle of abrasives fixed on the pad surface. Based on the method, polishing pads with the regular and radial configurations were designed and used to study trajectory distributions under different polishing parameters. The polishing experiments were carried out on silicon wafers with the regular and the radial diamond polishing pads made by the sol-gel method. The wafer surface morphology, thickness, and roughness were detected in polishing. The results show that better flatness and roughness distributions can be obtained through using the radial pad than that of the regular pad, which is due to the smaller value of variation coefficient of the standard deviation for trajectory density and better global profile of trajectory density. The method of pad design and trajectory analysis can be an effective way to design pads with proper abrasive configurations for different applications in lapping and polishing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan JL, Wang ZW, Wen DH, Lu BH, Dai Y (2000) Review of the current situation of ultra-precision machining. Chin J Mech Eng 43(1):35–48

    Article  Google Scholar 

  2. Su JX, Guo DM, Kang RK, Jin ZJ, Li XJ, Tian YB (2004) Modeling and analyzing on nonuniformity of material removal in chemical mechanical polishing of silicon wafer. Mater Sci Forum 471–472:26–31. doi:10.4028/www.scientific.net/MSF.471-472.26

    Article  Google Scholar 

  3. Sousa FJP, Aurich JC, Weingaertner WL, Alarcon OE (2007) Kinematics of a single abrasive particle during the industrial polishing process of porcelain stoneware tiles. J Eur Ceram Soc 10:3183–3190. doi:10.1016/j.jeurceramsoc.2006.12.007

    Article  Google Scholar 

  4. Shan L, Levert J, Meade L, Tichy J, Danyluk S (1999) Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing. J Tribol 122(3):539–543. doi:10.1115/1.555398

    Article  Google Scholar 

  5. Wang CL, Jin ZJ, Kang RK (2008) Effects of kinematic forms on material removal rate and non-uniformity in chemical mechanical planarisation. Int J Mater Prod Technol 31:54–62. doi:10.1504/IJMPT.2008.015895

    Article  Google Scholar 

  6. Oh S, Seok J (2008) Modeling of chemical-mechanical polishing considering thermal coupling effects. Microelectron Eng 85(11):2191–2201. doi:10.1016/j.mee.2008.04.037

    Article  Google Scholar 

  7. Zhao YW, Chang L, Kim SH (2003) A mathematical model for chemical-mechanical polishing based on formation and removal weakly bonded molecular species. Wear 254(3-4):332–339. doi:10.1016/S0043-1648(03)00015-2

    Article  Google Scholar 

  8. Castillo-Mejia D, Beaudoin S (2003) A locally relevant prestonian model for wafer polishing. J Electrochem Soc 150(2):96–102. doi:10.1149/1.1532330

    Article  Google Scholar 

  9. Bozkaya D, Muftu S (2009) A material removal model for CMP based on the contact mechanics of pad, abrasives and wafer. J Electrochem Soc 156(12):890–902. doi:10.1149/1.3231691

    Article  Google Scholar 

  10. Bott S, Rzehak R, Vasilev B, Kucher P, Bartha JW (2011) A CMP model including global distribution of pressure. IEEE Trans Semicond Manuf 24(2):304–314. doi:10.1109/TSM.2011.2107532

    Article  Google Scholar 

  11. Hocheng H, Tsai HY, Tsai MS (2000) Effects of kinematic variables on non-uniformity in chemical mechanical planarization. Int J Mach Tools Manuf 40:1651–1669. doi:10.1016/S0890-6955(00)00013-4

    Article  Google Scholar 

  12. Tso PL, Wang YY, Tsai MJ (2001) A study of carrier motion on a dual face CMP machine. J Mater Process Technol 116:194–200. doi:10.1016/S0924-0136(01)01045-7

    Article  Google Scholar 

  13. Kim HJ, Jeong HD (2004) Effect of process conditions on uniformity of velocity and wear distance of pad and wafer during chemical mechanical planarization. J Electron Mater 33(1):53–60. doi:10.1007/s11664-004-0294-4

    Article  Google Scholar 

  14. Yang JD, Wen XH, Zhu YQ, Wang LJ (1997) Discussing on solid abrasive lapping path. Chin J Mech Eng 10(2):101–105

    Google Scholar 

  15. Pan JS, Yan QS, Xu XP, Zhu JT, Wu ZC, Bai ZW (2012) Abrasive particles trajectory analysis and simulation of cluster magnetorheological effect plane polishing. Phys Procedia 25(22):176–184. doi:10.1016/j.phpro.2012.03.067

    Article  Google Scholar 

  16. Zhao DW, Wang TQ, He YY, Lu XC (2013) Kinematic optimization for chemical mechanical polishing based on statistical analysis of particle trajectories. IEEE Trans Semicond Manuf 26(4):556–563. doi:10.1109/TSM.2013.2281218

    Article  Google Scholar 

  17. Yuan JL, Yao WF, Zhao P, Lyu BH, Chen ZX, Zhong MP (2015) Kinematics and trajectory of both cylindrical lapping process in planetary motion type. Int J Mach Tools Manuf 92:60–71. doi:10.1016/j.ijmachtools.2015.02.004

    Article  Google Scholar 

  18. Luo JF, Dornfeld DA (2003) Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification. IEEE Trans Semicond Manuf 16(3):469–476. doi:10.1109/TSM.2003.815199

    Article  Google Scholar 

  19. Zuo DW, Sun YL, Zhao YF, Zhu YW (2009) Basic research on polishing with ice bonded nanoabrasive pad. J Vac Sci Technol B 27(3):1514–1519. doi:10.1116/1.3125272

    Article  Google Scholar 

  20. Zarudi I, Zhang L (1996) Subsurface damage in single-crystal silicon due to grinding and polishing. J Mater Sci Lett 15:586–587. doi:10.1007/BF00579258

    Article  Google Scholar 

  21. Tateishi T, Gao Q, Tani Y, Yanagihara K, Sato H (2006) Development of a high-porosity fixed abrasive pad utilizing catalytic effects of TiO2 on polyurethane matrix. CIRP Ann Manuf Technol 55(1):321–324. doi:10.1016/S0007-8506(07)60426-0

    Article  Google Scholar 

  22. Uhimann E, Ardelt T, Spur G (1999) Influence of kinematics on the face grinding process on lapping machines. Ann CIRP 48(1):281–284. doi:10.1016/S0007-8506(07)63184-9

    Article  Google Scholar 

  23. Tam HY, Cheng HB (2010) An investigation of the effects of the tool path on the removal of material in polishing. J Mater Process Technol 210(5):807–818. doi:10.1016/j.jmatprotec.2010.01.012

    Article  Google Scholar 

  24. Sousa FJP, Hossea DS, Reichenbach I, Aurich JC, Seewig J (2013) Influence of kinematics and abrasive configuration on the grinding process of glass. J Mater Process Technol 213:728–739. doi:10.1016/j.jmatprotec.2012.11.026

    Article  Google Scholar 

  25. Li QC, Shen JY, Fang CF, Xu XP (2014) Study on fixed abrasive lapping hard and brittle materials with brazed micro powder diamond disk. Key Eng Mater 589–590:451–456. doi:10.4028/www.scientific.net/KEM.589-590.451

    Article  Google Scholar 

  26. Feng T (2007) Pad conditioning density distribution in CMP process with diamond dresser. IEEE Trans Semicond Manuf 20(4):464–475. doi:10.1109/TSM.2007.907618

    Article  Google Scholar 

  27. Baisie EA, Li ZC, Zhang XH (2013) Design optimization of diamond disk pad conditioners. Int J Adv Manuf Technol 66:2014–2052. doi:10.1007/s00170-012-4480-x

    Article  Google Scholar 

  28. Nguyen NY, Zhong ZW, Tian Y (2015) An analytical investigation of pad wear caused by the conditioner in fixed abrasive chemical-mechanical polishing. Int J Adv Manuf Technol 77:897–905. doi:10.1007/s00170-014-6490-3

    Article  Google Scholar 

  29. Spur G, Eichhorn H (1997) Kinematisches Simulationsmodell des lappscheibenverschleiβes. IDR 31(2):169–178

    Google Scholar 

  30. Yeruva SB, Park CW, Rabinovich YI, Moudgil BM (2009) Impact of pad-wafer contact area in chemical mechanical polishing. J Electrochem Soc 156(10):408–412. doi:10.1149/1.3186032

    Article  Google Scholar 

  31. Luo JF, Dornfeld DA (2003) Effects of abrasive size distribution in chemical mechanical planarization: modelling and verification. IEEE Tran Semicond Manuf 16(3):469–476. doi:10.1109/TSM.2003.815199

    Article  Google Scholar 

  32. Uneda M, Maeda Y, Ishikawa K, Ichikawa K, Doi T (2012) Relationships between contact image analysis results for pad surface texture and removal rate in CMP. J Electrochem Soc 159(2):90–95. doi:10.1149/2.008202jes

    Article  Google Scholar 

  33. Lu LY, Fang CF, Shen JY, Lu J, Xu XP (2014) Analysis of path distribution in lapping and polishing with single fixed abrasive. Key Eng Mater 589–590:475–479. doi:10.4028/www.scientific.net/KEM.589-590.475

    Google Scholar 

  34. Roswell A, Xi FF, Liu GJ (2006) Modelling and analysis of contact stress for automated polishing. Int J Mach Tools Manuf 46(3-4):424–435. doi:10.1016/j.ijmachtools.2005.05.006

    Article  Google Scholar 

  35. Dong ZC, Cheng HB (2014) Study on removal mechanism and removal characters for SiC and fused silica by fixed abrasive diamond pellets. Int J Mach Tools Manuf 85:1–13. doi:10.1016/j.ijmachtools.2014.04.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congfu Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Zhao, Z., Lu, L. et al. Influence of fixed abrasive configuration on the polishing process of silicon wafers. Int J Adv Manuf Technol 88, 575–584 (2017). https://doi.org/10.1007/s00170-016-8808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8808-9

Keywords

Navigation