Skip to main content

Advertisement

Log in

STEP-NC compliant process planning of additive manufacturing: remanufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive manufacturing is becoming one of the key methods for reproducing repair sections in remanufacturing processes. The major advantage of using additive processes is to minimize production time and waste. However, the surface quality and shape accuracy are usually insufficient for the final product because the approximated representation format causes the accumulation of the error during the geometric operations of the process planning. This limitation is a barrier to utilize additive processes as finishing processes, such as general metal cutting. There is need to improve the final quality of parts obtained with additive manufacturing. In this paper, STEP-based numerical control (STEP-NC)-based process planning is applied to the additive manufacturing. ISO 14649 (STEP-NC) describes part programs with geometric data directly and also contains the information necessary for the intelligent process planning. This paper proposes the STEP-NC-based representation method of additive manufacturing and the series of geometric reasoning to automate the derivation of the repair section. The proposed representation has the benefits to provide a high accuracy for the final surface and to describe multiple materials. Topological data maintain low error during the series of process planning through the CAD-CAM-CNC chain. The proposed platform supports consideration of the process tolerance and comparison of the selected plan with alternative processes. In order to show the practical advantages, an analysis of the remanufacturing process is carried out. The case study of remanufacturing a pocket part is presented in order to validate the proposed process plan. The result of the case study shows the improvement in terms of automatic process planning and surface quality accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 3D systems Inc (1989) Stereolithography interface specification. Valencia

  2. International Standard Organization (2013) Standard specification for additive manufacturing file format (AMF) version 1.1. International Standard Organization, Geneva, ISO publication: ISO/ASTM 52915

    Google Scholar 

  3. International Standard Organization (2003) Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 1: overview and fundamental principles. International Standard Organization, Geneva, ISO publication: ISO 14649-1

    Google Scholar 

  4. Stroud I, Nagy H (2011) Solid modelling and CAD systems: how to survive a CAD system. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  5. International Standard Organization (2014) Industrial automation systems and integration—product data representation and exchange—part 242: application protocol: managed model-based 3D engineering. International Standard Organization, Geneva, ISO publication: ISO 10303-242

    Google Scholar 

  6. Yang SS, Ngiam HY, Ong SK, Nee AYC (2015) The impact of automotive product remanufacturing on environmental performance. Proc CIRP 29:774–779. doi:10.1016/j.procir.2015.01.017

    Article  Google Scholar 

  7. Smith VM, Keoleian GA (2004) The value of remanufactured engines: life‐cycle environmental and economic perspectives. J Ind Ecol 8(1‐2):193–221. doi:10.1162/1088198041269463

    Google Scholar 

  8. Luglietti R, Taisch M, Magalini F, Cassina J, Mascolo JE (2014) Environmental and economic evaluation of end-of-life alternatives for automotive engine. IEEE Int Conf Eng, Technol Innov 1-9. doi:10.1109/ICE.2014.6871603

  9. Shi J, Li T, Liu Z, Zhang H, Peng S, Jiang Q, Yin J (2015) Life cycle environmental impact evaluation of newly manufactured diesel engine and remanufactured LNG engine. Proc CIRP 29:402–407. doi:10.1016/j.procir.2015.01.029

    Article  Google Scholar 

  10. Zhu S (2013) Robotic GMAW forming remanufacturing technology. Adv Manuf 1(1):87–90. doi:10.1007/s40436-013-0001-x

    Article  Google Scholar 

  11. Yin Z, Yuan X, Zhang G, Zhao H (2012) Research on structured light 3D vision in the remanufacturing system based on robotic arc welding. IEEE 10th World Congress on Intelligent Control and Automation (WCICA) 4527-4531. doi:10.1109/WCICA.2012.6359336

  12. Dong S, Xu B, Wang Z, Ma Y, Liu W (2007) Laser remanufacturing 1054 Q10 technology and its applications. International Society for Optics and 1055 Photonics In Photonics Asia 68251N-68251N. doi:10.1117/12.782335

  13. Ren HF, Ren JL, Zhao LG, Wang QX (2013) Simulation analysis on selection of laser cladding repair material for the diesel engine crankshaft crack. Adv Mater Res 820:175–179. doi:10.4028/www.scientific.net/AMR.820.175

    Article  Google Scholar 

  14. Brøtan V (2014) A new method for determining and improving the accuracy of a powder bed additive manufacturing machine. Int J Adv Manuf Technol 74(9-12):1187–1195. doi:10.1007/s00170-014-6012-3

    Article  Google Scholar 

  15. Zhang P, Liu Z (2016) Machinability investigations on turning of Cr-Ni-based stainless steel cladding formed by laser cladding process. Int J Adv Manuf Technol 82(9):1707–1714. doi:10.1007/s00170-015-7474-7

    Article  Google Scholar 

  16. Rickli JL, Dasgupta AK, Dinda GP (2014) A descriptive framework for additive remanufacturing systems. Int J Rapid Manuf 4(2-4):199–218. doi:10.1504/IJRAPIDM.2014.066043

    Article  Google Scholar 

  17. Zhu S, Liu J, Yin FL, Meng FJ, Chang TQ (2015) An innovative forming method based on an arc welding robot. Int J Adv Manuf Technol 1-8 (published in online). doi:10.1007/s00170-015-7582-4

  18. National Institute of Standards and Technology (2013) Measurement science roadmap for metal-based additive manufacturing. NIST Gaithersburg, Maryland. http://www.nist.gov/el/isd/upload/NISTAdd_Mfg_Report_FINAL-2.pdf. Access 22 March 2016

  19. Heidi P, Thomas W, Ari H, Jari J, Antti S, Petri K, Olli N (2013) Digital design process and additive manufacturing of a configurable product. Adv Sci Lett 19(3):926–931. doi:10.1166/asl.2013.4827

    Article  Google Scholar 

  20. Doubrovski EL, Tsai EY, Dikovsky D, Geraedts JMP, Herr H, Oxman N (2015) Voxel-based fabrication through material property mapping: a design method for bitmap printing. Comput Aided Des 60:3–13. doi:10.1016/j.cad.2014.05.010

    Article  Google Scholar 

  21. Pratt MJ, Bhatt AD, Dutta D, Lyons KW, Patil L, Sriram RD (2002) Progress towards an international standard for data transfer in rapid prototyping and layered manufacturing. Comput Aided Des 34(14):1111–1121. doi:10.1016/S0010-4485(01)00189-0

    Article  Google Scholar 

  22. International Standard Organization (2014) Industrial automation systems and integration—product data representation and exchange—part 44: integrated generic resource: product structure configuration. International Standard Organization, Geneva, ISO publication: ISO 10303-44

    Google Scholar 

  23. International Standard Organization (2014) Industrial automation systems and integration—product data representation and exchange—part 45: integrated generic resource: material and other engineering properties. International Standard Organization, Geneva, ISO publication: ISO 10303-45

    Google Scholar 

  24. International Standard Organization (2014) Industrial automation systems and integration—product data representation and exchange—part 47: integrated generic resource: shape variation tolerances. International Standard Organization, Geneva, ISO publication: ISO 10303-47

    Google Scholar 

  25. International Standard Organization (1998) Industrial automation systems and integration—product data representation and exchange—part 49: integrated generic resources: process structure and properties (ISO publication: ISO 10303-49. International Standard Organization, Geneva

    Google Scholar 

  26. International Standard Organization (2002) Industrial automation systems and integration—product data representation and exchange—part 50: integrated generic resource: mathematical constructs. International Standard Organization, Geneva, ISO publication: ISO 10303-50

    Google Scholar 

  27. Nassar AR, Reutzel EW (2013) A proposed digital thread for additive manufacturing. International Solid Freeform Fabrication Symposium 19-43, Austin, Texas. http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-02-Nassar.pdf. Accessed 22 March 2016

  28. Kim DB, Witherell P, Lipman R, Feng SC (2015) Streamlining the additive manufacturing digital spectrum: a systems approach. Addit Manuf 5:20–30. doi:10.1016/j.addma.2014.10.004

    Article  Google Scholar 

  29. Hardwick M (2013) A roadmap to model based manufacturing. 1058 Q11 International Conference on Advanced Manufacturing 1059 Engineering and Technologies, Stockholm 273-282. http://www.1060diva-portal.org/smash/get/diva2:660817/FULLTEXT09.1061pdf#page=273. Accessed 22 March 2016

  30. Wang K, Zhang C, Xu X, Ji S, Yang L (2013) A CNC system based on real-time ethernet and Windows NT. Int J Adv Manuf Technol 65(9):1383–1395. doi:10.1007/s00170-012-4264-3

    Article  Google Scholar 

  31. Hardwick M, Zhao YF, Proctor FM, Nassehi A, Xu X, Venkatesh S, Odendahl D, Xu L, Hedlind M, Lundgren M, Maggiano L, Loffredo D, Fritz J, Olsson B, Garrido J, Brail A (2013) A roadmap for STEP-NC enabled interoperable manufacturing. Int J Adv Manuf Technol 68:1023–1037. doi:10.1007/s00170-013-4894-0

    Article  Google Scholar 

  32. Suh SH, Cheon SU (2002) A framework for an intelligent CNC and data model. Int J Adv Manuf Technol 19:727–735. doi:10.1007/s001700200083

    Article  Google Scholar 

  33. Liang H, Li X (2013) Five-axis STEP-NC controller for machining of surfaces. Int J Adv Manuf Technol 68:2791–2800. doi:10.1007/s00170-013-4871-7

    Article  Google Scholar 

  34. Laguionie R, Rauch M and Hascoët J-Y (2011) A multi-process manufacturing approach based on STEP-NC data model. In: Global Product Development. (Springer Berlin Heidelberg), pp. 253–263

  35. Chung DH, Suh SH (2008) ISO 14649-based nonlinear process planning implementation for complex machining. Comput Aided Des 40(5):521–536. doi:10.1016/j.cad.2008.01.009

    Article  Google Scholar 

  36. Bonnard R, Mognol P, Hascoët JY (2010) A new digital chain for additive manufacturing processes. Virt Phys Prototype 5(2):75–88. doi:10.1080/17452751003696916

    Article  Google Scholar 

  37. Mudge RP, Wald NR (2007) Laser engineered net shaping advances additive manufacturing and repair. Weld J N Y 86(1):44-48. http://www.rpm-innovations.com/download/lens_advances_manufacturing_and_repair.pdf Accessed 22 March 2016

  38. International Standard Organization (2004) Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 10: general process data. International Standard Organization, Geneva, ISO publication: ISO 14649-10

    Google Scholar 

  39. International Standard Organization (2004) Industrial automation systems and integration—physical device control—data model for computerized numerical controllers— part 11: process data for milling. International Standard Organization, Geneva, ISO publication: ISO 10303-11

    Google Scholar 

  40. International Standard Organization (2005) Industrial automation systems and integration— physical device control—data model for computerized numerical controllers—part 12: process data for turning. International Standard Organization, Geneva, ISO publication: ISO 14649-12

    Google Scholar 

  41. International Standard Organization (2013) Automation systems and integration—physical device control—data model for computerized numerical controllers—part 13: process data for wire electrical discharge machining (wire-EDM). International Standard Organization, Geneva, ISO publication: ISO 14649-13

    Google Scholar 

  42. International Standard Organization (2013) Automation systems and integration—physical device control—data model for computerized numerical controllers—part 14: process data for sink electrical discharge machining (sink-EDM). International Standard Organization, Geneva, ISO publication: ISO 14649-14

    Google Scholar 

  43. Laguionie R, Rauch M, Hascoët JY, Suh SH (2011) An eXtended manufacturing integrated system for feature-based manufacturing with STEP-NC. Int J Comput Integr Manuf 24(9):785–799. doi:10.1080/0951192X.2011.592992

    Article  Google Scholar 

  44. Rauch M, Laguionie R, Hascoet JY, Suh SH (2012) An advanced STEP-NC controller for intelligent machining processes. Robot Comput Integr Manuf 28(3):375–384. doi:10.1016/j.rcim.2011.11.001

    Article  Google Scholar 

  45. Nassehi A, Allen RD, Newman ST (2006) Application of mobile agents in interoperable STEP-NC compliant manufacturing. Int J Prod Res 44(18-19):4159–4174. doi:10.1080/00207540600786723

    Article  MATH  Google Scholar 

  46. Flynn JM, Shokrani A, Newman ST, Dhokia V (2015) Hybrid additive and subtractive machine tools-research and industrial developments. Int J Mach Tools Manuf 101:79–101. doi:10.1016/j.ijmachtools.2015.11.007

    Article  Google Scholar 

  47. International Standard Organization (1996) Industrial automation systems and integration—product data representation and exchange—part 105: integrated application resource: kinematics. International Standard Organization, Geneva, ISO publication: ISO 10303-105

    Google Scholar 

  48. Rauch M, Laguionie R, Hascoet J-Y (2009) Achieving a STEP-NC enabled advanced NC programming environment. In advanced design and manufacturing based on STEP. Springer, London, pp 197–214

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumyung Um.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Um, J., Rauch, M., Hascoët, JY. et al. STEP-NC compliant process planning of additive manufacturing: remanufacturing. Int J Adv Manuf Technol 88, 1215–1230 (2017). https://doi.org/10.1007/s00170-016-8791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8791-1

Keywords

Navigation