Skip to main content
Log in

Big Data in product lifecycle management

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Recently, “Big Data” has attracted not only researchers’ but also manufacturers’ attention along with the development of information technology. In this paper, the concept, characteristics, and applications of “Big Data” are briefly introduced first. Then, the various data involved in the three main phases of product lifecycle management (PLM) (i.e., beginning of life, middle of life, and end of life) are concluded and analyzed. But what is the relationship between these PLM data and the term “Big Data”? Whether the “Big Data” concept and techniques can be employed in manufacturing to enhance the intelligence and efficiency of design, production, and service process, and what are the potential applications? Therefore, in order to answer these questions, the existing applications of “Big Data” in PLM are summarized, and the potential applications of “Big Data” techniques in PLM are investigated and pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crawford K (2011) Six provocations for big data. Oxford Internet Institute’s. A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1926431

  2. Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, Hide W, Rhee SY (2008) Big Data: the future of biocuration. Nature 455(7209):47–50

    Article  Google Scholar 

  3. Larose DT (2014) Discovering knowledge in data: an introduction to data mining[M]. John Wiley & Sons, New York, pp 240

  4. Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. John Wiley & Sons, New York, pp 552

    Book  Google Scholar 

  5. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed GraphLab: a framework for machine learning and data mining in the cloud. Proc VLDB Endowment 5(8):716–727

    Article  Google Scholar 

  6. Aggarwal C C, Zhai C (2012). Mining text data. Springer Science & Business Media, USA, pp 524

  7. Baradwaj B K., Pal S (2012). Mining educational data to analyze students’ performance. arXiv preprint arXiv:1201.3417.

  8. Manyika J., Chui M., Brown B., Bughin J., Dobbs R., Roxburgh C., Byers A. H. (2011). Big data: the next frontier for innovation, competition and productivity. Technical report, McKinsey Global Institute 5(33):222, http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation

  9. Goss R G, Veeramuthu K. (2013) Heading towards “Big Data” building a better data warehouse for more data, more speed, and more users. Advanced Semiconductor Manufacturing Conference (ASMC) 24th Annual SEMI. 220–225.

  10. Jian CF, Wang Y (2014) Batch task scheduling-oriented optimization modelling and simulation in cloud manufacturing. Int J Simul Model 13(1):93–101

    Article  Google Scholar 

  11. Garg SK, Buyya R, Siegel HJ (2010) Time and cost trade-off management for scheduling parallel applications on utility grids. Futur Gener Comput Syst 26(8):1344–1355

    Article  Google Scholar 

  12. Laudon KC, Laudon JP (2011) Essentials of management information systems. Pearson, Upper Saddle River

    Google Scholar 

  13. Waller MA, Fawcett SE (2013) Click here for a data scientist: “Big Data”, predictive analytics, and theory development in the Era of a maker movement supply chain. J Bus Logist 34(4):249–252

    Article  Google Scholar 

  14. Christopher M, Ryals LJ (2014) The supply chain becomes the demand chain. J Bus Logist 35(1):29–35

    Article  Google Scholar 

  15. Da Silveira G, Borenstein D, Fogliatto FS (2001) Mass customization: literature review and research directions. Int J Prod Econ 72(1):1–13

    Article  Google Scholar 

  16. Tien JM (2012) The next industrial revolution: integrated services and goods. J Syst Sci Syst Eng 21(3):257–296

    Article  Google Scholar 

  17. Tien JM (2013) “Big Data”: unleashing information. J Syst Sci Syst Eng 22(2):127–151

    Article  MathSciNet  Google Scholar 

  18. Tao F, Cheng Y, Zhang L, Nee A Y C (2015) Advanced manufacturing systems: socialization characteristics and trends, Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-015-1042-8, (in Press)

  19. Tao F, Zhang L, Venkatesh VC, Luo Y, Cheng Y (2012) Cloud manufacturing: a computing and service-oriented manufacturing model. Proc Inst Mech Eng B J Eng Manuf 225(10):1969–1976

    Article  Google Scholar 

  20. Babu KS, Rao DDN, Balakrishna A, Rao CS (2010) Development of a manufacturing database system for STEP-NC data from express entities. Int J Eng Sci Technol 2(11):6819–6828

    Google Scholar 

  21. Lohr S (2012) The age of big data. NY Times 11 http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=1&scp=1&sq=Big%20Data&st=cse

  22. Russom P (2011) Big data analytics. TDWI Best Practices Report, Fourth Quarter http://public.dhe.ibm.com/common/ssi/ecm/en/iml14293usen/IML14293USEN.PDF

  23. Huth EJ (1989) The information explosion. Bull N Y Acad Med 65(6):647

    Google Scholar 

  24. Manabe T, Matsuura J, Murakami O, Matsuura J (1994) Information collecting and/or service furnishing systems by which a user can request information from a central data base using a portable personal terminal and an access terminal. U.S. Patent 5,339,239

  25. Frakes WB, Baeza Yates R (1992) Information retrieval: data structures and algorithms. Prentice Hall, Englewood Cliffs, pp 464

    Google Scholar 

  26. Payne JW (1976) Task complexity and contingent processing in decision making: an information search and protocol analysis. Organ Behav Hum Perform 16(2):366–387

    Article  Google Scholar 

  27. Cox M, Ellsworth D (1997) Application-controlled demand paging for out-of-core visualization. Proceedings of the 8th conference on Visualization 97. IEEE Computer Society Press, USA, 235-ff

  28. Power DJ (2007) A brief history of decision support systems. World Wide Web. http://DSSResources.COM/history/dsshistory

  29. Chen H, Chiang RHL, Storey VC (2012) Business intelligence and analytics: from Big Data to Big Impact. MIS Q 36(4):1165–1188

    Google Scholar 

  30. Lyman P, Varian HR (2000) Reprint: how much information? J Electron Publ 6(2) DOI: 10.3998/3336451.0006.204

  31. Laney D (2001) 3D data management: controlling data volume, velocity and variety. META Group Research Note. Retrieved from http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

  32. Hilbert M, López P (2011) The world’s technological capacity to store, communicate, and compute information. Science 332(6025):60–65

    Article  Google Scholar 

  33. Knights, M. I. Y. A. (2007). Web 2.0 [web technologies]. Communications Engineer, 5(1):30–35

  34. Gantz JF (2007) The expanding digital universe: a forecast of worldwide information growth through 2010. IDC

  35. Bryant R, Katz RH, Lazowska ED (2008) Big-Data computing: creating revolutionary breakthroughs cn Commerce, science and society. http://www.datascienceassn.org/sites/default/files/Big%20Data%20Computing%202008%20Paper.pdf

  36. Gupta R, Gupta H, Mohania M (2012) Cloud computing and “Big Data” analytics: what is new from databases perspective? “Big Data” analytics. Springer, Berlin, pp 42–61

    Google Scholar 

  37. M. Graen (1999) Technology in manufacturer/retailer integration: Wal-Mart and Procter & Gamble. Private communication

  38. Shaw MJ, Subramaniam C, Tan GW, Welge ME (2001) Knowledge management and data mining for marketing. Decis Support Syst 31(1):127–137

    Article  Google Scholar 

  39. Liu C, Arnett KP (2000) Exploring the factors associated with Web site success in the context of electronic commerce. Inform Manag 38(1):23–33

    Article  Google Scholar 

  40. Strahonja V (2002) Complexity metric of data enquiry functions for public registers and electronic commerce. Inf Technol Interfaces :63–68

  41. Wei FF (2013) ECL Hadoop: “Big Data” processing based on Hadoop strategy in effective e-commerce logistics. Comput Eng Sci 35(10):65–71

    Google Scholar 

  42. Preis T, Moat HS, Stanley HE (2013) Quantifying trading behavior in financial markets using Google Trends. Sci Rep 3:1684

    Google Scholar 

  43. Moat HS, Curme C, Avakian A, Kenett DY, Stanley HE, Preis T (2013) Quantifying Wikipedia usage patterns before stock market moves. Sci Rep 111(32):11600–11605

    Google Scholar 

  44. Fuhrer E (2000) System for enhanced financial trading support: U.S. Patent 6,105,005[P]

  45. Bughin J, Chui M, Manyika J (2010) Clouds, “Big Data”, and smart assets: ten tech-enabled business trends to watch. McKinsey Q 56(1):75–86

    Google Scholar 

  46. Murdoch TB, Detsky AS (2013) The inevitable application of “Big Data” to health care [J]. JAMA 309(13):1351–1352

    Article  Google Scholar 

  47. Steinbrook R (2008) Personally controlled online health data-the next big thing in medical care. N Engl J Med 358(16):1653

    Article  Google Scholar 

  48. Groves P, Kayyali B, Knott D, Van Kuiken S (2013) The “Big Data” revolution in healthcare. McKinsey Q http://www.pharmatalents.es/assets/files/Big_Data_Revolution.pdf

  49. Weiss GM (2005) Data mining in telecommunications. Data mining and knowledge discovery handbook. Springer, US, pp 1189–1201

    Book  Google Scholar 

  50. Kļevecka I, Lelis J (2008) Pre-processing of input data of neural networks: the case of forecasting telecommunication network traffic. Riga Tech Univ 104:168–178

    Google Scholar 

  51. Stark J (2011) Product lifecycle management. Springer, London

    Book  Google Scholar 

  52. Jun HB, Shin JH, Kim YS, Kiritsis D, Xirouchakis P (2009) A framework for RFID applications in product lifecycle management. Int J Comput Integr Manuf 22(7):595–615

    Article  Google Scholar 

  53. Shehab E, Roy R (2011) Guest editorial: IJAMT special issue on: product-service systems. Int J Adv Manuf Technol 52(9):1115–1116

    Article  Google Scholar 

  54. Tao F, Cheng Y, Xu L, Zhang L, Li B (2014) CCIoT-CMfg: cloud computing and internet of things based cloud manufacturing service system. IEEE Trans Ind Inf 10(2):1435–1442

    Article  Google Scholar 

  55. Tao F, Laili YJ, Xu L, Zhang L (2013) FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf 9(4):2023–2033

    Article  Google Scholar 

  56. Tao F, Zhang L, Liu Y, Cheng Y, Wang LH, Xun X (2015) Manufacturing service management in cloud manufacturing: overview and future research directions. J Manuf Sci Eng Trans ASME (In Press)

  57. Singh Madan G, Bennavail JC (1989) TAPS: a knowledge support system for marketing budget sizing, allocation and targeting in retail banking and other industries Systems. Man Cybern 1:119–124

    Google Scholar 

  58. Hsu W, Woon IMY (1998) Current research in the conceptual design of mechanical products. Comput Aided Des 30(5):377–389

    Article  Google Scholar 

  59. Loiter B (1986) Manufacturing assembly handbook. Butterworths, Boston

    Google Scholar 

  60. Akao Y, King B (1990). Quality function deployment: integrating customer requirements into product design vol 21. Cambridge, MA: Productivity Press

  61. Lee YC, Sheu LC, Tsou YG (2008) Quality function deployment implementation based on Fuzzy Kano model: an application in PLM system. Comput Ind Eng 55(1):48–63

    Article  Google Scholar 

  62. Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A (2002) Collaborative conceptual design—state of the art and future trends. Comput Aided Des 34(13):981–996

    Article  Google Scholar 

  63. Jiao JR, Simpson TW, Siddique Z (2007) Product family design and platform-based product development: a state-of-the-art review. J Intell Manuf 18(1):5–29

    Article  Google Scholar 

  64. Caldwell NHM, Clarkson PJ, Rodgers PA, Huxor AP (2000) Web-based knowledge management for distributed design. Intell Syst Appl 15(3):40–47

    Article  Google Scholar 

  65. Abdalla HS, Salah F (2009) Creative approaches in product design. Proceedings of the 19th CIRP Design Conference–Competitive Design http://hdl.handle.net/1826/3720

  66. Szykman S, Sriram RD, Bochenek C, Racz JW, Senfaute J (2000) Design repositories: engineering design’s new knowledge base. IEEE Intell Syst 15(3):48–55

    Article  Google Scholar 

  67. Lin CC, Su CT (2012) Choosing the best supplier using the TOPSIS Method and improving deteriorated or defective inventory with batch processing. IJACT: Int J Adv Comput Technol 4(23):600–608

    Article  Google Scholar 

  68. Dahlberg T, Nyrhinen M (2006) A new instrument to measure the success of IT outsourcing. System Sciences. Proceedings of the 39th Annual Hawaii International Conference. IEEE 8:200a

    Google Scholar 

  69. Tjader Y, May JH, Shang J, Vargas LG, Gao N (2014) Firm-level outsourcing decision making: a balanced scorecard-based analytic network process model. Int J Prod Econ 147:614–623

    Article  Google Scholar 

  70. Lee AN, Martinez Lastra JL (2013) Enhancement of industrial monitoring systems by utilizing context awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2013 IEEE International Multi-Disciplinary Conference On. IEEE, 2013 :277–284

  71. Zhang YH, Dai QY, Zhong RY (2009) An extensible event-driven manufacturing management with complex event processing approach. Int J Control Autom 2(3):1–12

    Google Scholar 

  72. Zhong RY, Huang GQ, Dai Q (2014) A “Big Data” cleansing approach for n-dimensional RFID-Cuboids. Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 I.E. 18th International Conference On. IEEE, 2014 :289–294

  73. Armes T, Refern M (2013) Using “Big Data” and predictive machine learning in aerospace test environments. AUTOTESTCON IEEE :1–5

  74. Kuo RJ, Cohen PH (1999) Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Netw 12(2):355–370

    Article  Google Scholar 

  75. Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47(14):2140–2152

    Article  Google Scholar 

  76. Sharma VS, Sharma SK, Sharma AK (2008) Cutting tool wear estimation for turning. J Intell Manuf 19(1):99–108

    Article  Google Scholar 

  77. Ghosh N, Ravi YB, Patra A, Mukhopadhyay S, Paul S, Mohanty AR, Chattopadhyay AB (2007) Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech Syst Signal Process 21(1):466–479

    Article  Google Scholar 

  78. Forza C, Salvador F (2002) Managing for variety in the order acquisition and fulfilment process: The contribution of product configuration systems. Int J Prod Econ 76(1):87–98

    Article  Google Scholar 

  79. Li SG, Kuo X (2008) The inventory management system for automobile spare parts in a central warehouse. Expert Syst Appl 34(2):1144–1153

    Article  MathSciNet  Google Scholar 

  80. De Koster R, Le-Duc T, Roodbergen KJ (2007) Design and control of warehouse order picking: a literature review. Eur J Oper Res 182(2):481–501

    Article  MATH  Google Scholar 

  81. Muller A, Crespo Marquez A, Iung B (2008) On the concept of e-maintenance: review and current research. Reliab Eng Syst Saf 93(8):1165–1187

    Article  Google Scholar 

  82. Ren M, Yang P (2012) Knowledge repository supported SOA application in collaborative MRO planning. Int J Digit Content Technol Appl 5(16)

  83. Han T, Yang BS (2006) Development of an e-maintenance system integrating advanced techniques. Comput Ind 57(6):569–580

    Article  MathSciNet  Google Scholar 

  84. Dat LQ, Truc Linh DT, Chou SY, Vincent FY (2012) Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Syst Appl 39(7):6380–6387

    Article  Google Scholar 

  85. Song SJ (1999) Intelligent decision support system for continuous improvement of resource-saving and recycling-conscious manufacturing. Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign '99: First International Symposium On. IEEE, 1999:723–727

  86. Jaspernite J (2014) Was hinter Begriffen wie Industrie 4.0 steckt. Comput Autom No.12, 12:24–28

  87. Kagermann H, Wahlster W, Helbig J (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0—final report of the Industrie 4.0 Working Group. Acatech, München, pp 19–26

    Google Scholar 

  88. Dangelmaier W, Fischer M, Gausemeier J, Grafe M, Matysczok C, Mueck B (2005) Virtual and augmented reality support for discrete manufacturing system simulation. Comput Ind 56(4):371–383

    Article  Google Scholar 

  89. Brettel M, Friederichsen N, Keller M, Rosenberg M (2014) How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 Perspective. Int J Mech Ind Sci Eng 8(1):37–44

    Google Scholar 

  90. Costa FF (2014) Big Data in biomedicine. Drug Discov Today 19(4):433–440

    Article  Google Scholar 

  91. Allen B, Bresnahan J, Childers L, Foster I, Kandaswamy G, Kettimuthu R, Tuecke S (2012) Software as a service for data scientists. Commun ACM 55:81–88

    Article  Google Scholar 

  92. Marx V (2013) The big challenges of big data. Nature 498:255–260

    Article  Google Scholar 

  93. Schadt EE (2012) The changing privacy landscape in the era of Big Data. Mol Syst Biol 8:612

    Article  Google Scholar 

  94. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192, bbs017

    Article  Google Scholar 

  95. Tao F, Zuo Y, Xu L, Lv L, Zhang L (2014) Internet of things and BOM based life cycle assessment of energy-saving and emission-reduction of product. IEEE Trans Ind Inf 10(2):1252–1264

    Article  Google Scholar 

  96. Tao F, Feng Y, Zhang L, Liao TW (2014) CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl Soft Comput 19:264–279

    Article  Google Scholar 

  97. Tao F, Laili YJ, Liu YL, Feng Y, Wang Q, Zhang L, Xu L (2014) Concept, principle and application of configurable intelligent optimization algorithm. IEEE Syst J 8(1):28–42

    Article  Google Scholar 

  98. Tao F, Zuo Y, Xu L, Zhang L (2014) IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf 10(2):1547–1557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tao, F., Cheng, Y. et al. Big Data in product lifecycle management. Int J Adv Manuf Technol 81, 667–684 (2015). https://doi.org/10.1007/s00170-015-7151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7151-x

Keywords

Navigation