Skip to main content
Log in

A review article: investigations on soft materials for soft robot manipulations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In recent years, exploratory research on soft materials and their mechanism has been gaining in popularity. The investigations on soft materials are mostly done for two reasons: (a) to develop an anthropomorphic/prosthetic hand or soft hand with human skin-like material to perform soft manipulations and (b) to develop soft actuators. This paper presented a comprehensive investigation into researches on soft materials for robotic applications. The primary interest of using soft materials is not to leave any marks or damage to objects during the manipulation. The other advantage would be stable grasping due to an area contact. Natural rubber, synthetic rubber, elastomer, polymer composite and nanoparticulated polymer composite are some existing soft materials. Extensive research is required to prepare a high-strength but lighter soft material for robotic soft manipulation. Human skin and its mechanical properties are initially discussed. In addition, the need of soft material for soft manipulations and observations from previous researches over the past few decades, modelling of non-linear hyperelastic/viscoelastic materials and characterization are discussed. Finally, various soft materials including the polymer-matrix composites, available fillers and their advantages, processing methods and nanoparticulated polymer matrix and its significance in robotic application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okada T (1979) Object handling system for manual industry. IEEE Tran on Syst Man Cybern 9(2):79–89

    Article  Google Scholar 

  2. Salisbury JK, Craig J (1982) Articulated hands: force control and kinematic issues. Int J Robot Res 1:4–17

    Article  Google Scholar 

  3. Jocobsen SC, Iversen EK, Knutti DF, Johnson RT, Biggers KB (1986) Design of the UTAH/MIT dexterous hand. IEEE Int Conf Robot Automation 3:1520–1532

    Google Scholar 

  4. Bekey, G.A., Tomovic, R. and Zeljkovic, I. (1990), Control architecture for the Belgrade/USC hand. In: Dextrous robot hands. Venkataraman, S.T. and Iberall, T. (Eds.), pp. 136–149, Springer Verlag.

  5. Eusebi A, Fantuzzi C, Melchiorri C, Sandri M, Tonielli A (1994) The UB hand II control system: design features and experimental results. Proc Ind Elect Control and Instrumen Bologna, IECON 94 2:782–787

    Article  Google Scholar 

  6. Han HY, Shimada A, Kawamura S (1996) Analysis of friction on human fingers and design of artificial fingers. Proc IEEE Int Conf Robot Autom Minnesota 4(22–28):3061–3066

    Google Scholar 

  7. Caffaz A, Cannata G (1998) The design and development of DIST-hand dexterous gripper. Proc IEEE Int Conf Robot Autom 3:2075–2080

    Google Scholar 

  8. Liu H, Meusel P, Butterfass J, Hirzinger G (1998) DLR’s multisensory articulated hand I. Hard and Software Arch IEEE Int Conf Robot Autom 3(16–20):2087–2093

    Article  Google Scholar 

  9. Lovehik CS, Diftler MA (1999) The robonaut hand: a dexterous robot hand for space. IEEE Int Conf Robot Auto 2:907–912

    Google Scholar 

  10. Ramos AM, Gravagne IA, Walker ID (1999) Goldfinger: a non-anthropomorphic dexterous robot hand. IEEE Int Conf Robot Auto 2:913–919

    Google Scholar 

  11. Townsend W (2000) The Barrett hand grasper—programmable flexible part handling and assembly. Int J Ind Robot 27(3):181–188

    Article  MathSciNet  Google Scholar 

  12. Fukaya N, Toyama S, Asfour T, Dillmann R (2000) Design of the TUAT/Karlsruhe humanoid hand. Proc Int Conf Intell Robots and Systems, Japan 3:1754–1759

    Google Scholar 

  13. Zhang Y, Han Z, Zhang H, Shang X, Wang T, Guo W, Gruver WA (2001) Design and control of the BUAA four-fingered hand. Proc IEEE Int Conf Robot Autom 3:2517–2522

    Google Scholar 

  14. Kawasaki H, Kornatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE / ASME Transac Mech 7(3):296–303

    Article  Google Scholar 

  15. Namiki A, Imai Y, Kaneko M, Ishikawa M (2003) Development of a high-speed multifingered hand system and its application to catching. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, pp 2666–2671

    Google Scholar 

  16. Shadow Robot Company (2003), Design of a dexterous hand for advanced clawer applications. In Climbing and walking robots and the supporting technologies for mobile machines, pp. 691–698

  17. Folgheraiter M, Gini G (2004) Human-like reflex control for an artificial hand. Biosystems 76:65–74

    Article  Google Scholar 

  18. Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C (2006) Design of a cybernetic hand for perception and action. Biol Cybern 95(6):629–644

    Article  MATH  Google Scholar 

  19. Kim E-H, Lee S-W, Lee Y-K (2011) A dexterous robot hand with a bio-mimetic mechanism. Int J Precis Eng Manuf 12(2):227–235

    Article  Google Scholar 

  20. Shimoga KB, Goldenberg AA (1992) Soft materials for robotic fingers. IEEE Int Confer Robot Auto France 2:1300–1305

    Google Scholar 

  21. Ciocarlie M, Miller A, Allen P (2005) Grasp analysis using deformable fingers. IEEE/RSJ Conf Intelligent Robots And Syst, Canada 2005:4122–4128

    Google Scholar 

  22. Cutkosky MR (1989) On grasp choice, grasp models and the design of hands for manufacturing. IEEE Trans Robot Autom 5(3):269–279

    Article  MathSciNet  Google Scholar 

  23. Bicchi A. and Vijayakumar (2000), Robotic grasping and contact: a review. Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, pp. 348–353

  24. Odland GF (1991) Structure of the skin. In: Goldsmith LA (ed) Physiology, biochemistry, and molecular biology of the skin. Oxford University Press, Oxford

    Google Scholar 

  25. Hendriks FM (2005) Mechanical behaviour of human epidermal and dermal layers in vivo. Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

  26. Manschot, J. (1985), The mechanical properties of human skin in vivo. Ph.D. Thesis, Catholic University of Nijmegen.

  27. Maurel W, Wu Y, Magnenat Thalmann N, Thalmann D (1998) Biomechanical models for soft tissue simulation. Esprit Basic Research Series, Springer-Verlag, Berlin

    Book  Google Scholar 

  28. Agache P, Monneur C, Leveque J, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232

    Article  Google Scholar 

  29. Edwards C, Marks R (1995) Evaluation of Biomechanical Properties of Human Skin. Clinics in Dermatology l(13):375–380

    Article  Google Scholar 

  30. Zhang G, Ning F, Zhao N (2007) Biomechanical properties of four dermal substitutes. Chin Med J 120(16):1454–1455

    Google Scholar 

  31. Gibson T, Kenedi RM, Craik JE (1965) The mobile micro-architecture of dermal collagen. Br J Surg 52:764–70

    Article  Google Scholar 

  32. Sangeorzan BJ, Harrington RM, Wyss CR, Czerniecki JM, Matsen FA (1989) Circulatory and mechanical response of skin to loading. J Orthop Res 7:425–31

    Article  Google Scholar 

  33. Cook TH (1989) Mechanical properties of human skin with aging. In: Balin AK, Kligman AM (eds) Aging and the skin. Raven, New York, pp 205–25

    Google Scholar 

  34. Gallagher AJ, Anniadh A, Bruyere K, Ottenio M, Xie H, Gilchrist MD (2012) Dynamic tensile properties of human skin. Proceedings of IRCOBI Conf Biomechan Inj 40:494–502

    Google Scholar 

  35. Alexander RM (1968) Animal mechanics. Sidgwick and Jackson, London

    Google Scholar 

  36. Diridollou S, Vabre V, Berson M, Vaillant L, Black D, Lagarde JM, Gregoire JM, Gall Y, Patat F (2001) Skin ageing: changes of physical properties of human skin in vivo. Int J Cosmet Sci 23(6):353–362

    Article  Google Scholar 

  37. Srinivasan MA (1989) Surface deflection of primate fingertip under line load. J Biomech Eng 22:343–349

    Article  Google Scholar 

  38. Dandekar K, Srinivasan AK (1995) A 3-dimensional finite element model of the monkey fingertip for predicting responses of slowly adapting mechanoreceptors. ASME Bio Conference 29:257–258

    Google Scholar 

  39. Dandekar K, Srinivasan AK (1996) An investigation of the mechanics of tactile sense using two dimensional models of the primate finger tip. J Bioeng 118:48–55

    Google Scholar 

  40. Dandekar K, Raju BI, Srinivasan MA (2003) 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J Biomech Eng 125(5):682–691

    Article  Google Scholar 

  41. Cutkosky M.R., Jourdain J.M. and Wright P.K. (1987), Skin materials for robotic fingers. Proceedings of IEEE Conference on Robotics and Automation, Stanford, pp. 1649–1654

  42. Tatara Y (1989) Extensive theory of force-approach relations of elastic spheres in compression and in impact. ASME J Eng Mat Technol 111:163–168

    Article  Google Scholar 

  43. Tatara Y (1991) On compression of rubber elastic sphere over a large range of displacements—Part 1: theoretical study. ASME J Eng Materials Technol 113:285–291

    Article  Google Scholar 

  44. Tatara, Y., Shima, S., Lucero, J.C.: On compression of rubber elastic sphere over a large range of displacements. Part 2: comparison of theory and experiment. ASME Journal of Engineering Materials Technology, Vol. 113, pp. 292–295.

  45. Goyal S, Ruina A, Papadopoulos J (1991) Planar sliding with dry friction—part 1. Wear 143:307–330

    Article  Google Scholar 

  46. Patton R, Swern F, Pricamos S, Van der Veena A (1992) Automated cloth handling using adaptive force feedback. J Dyn Syst Measur Control 114:731–733

    Article  Google Scholar 

  47. Wakamatsu H, Hirai S, Iwata K (1995) Modeling of linear objects considering bend, twist and extensional deformations’. Proc IEEE Int Conf Robot Autom, Nagoya, Japan 1:433–438

    Google Scholar 

  48. Shimoga KB, Goldenberg AA (1996) Soft robotic fingertips part I: a comparison of construction materials. Int J Robotics Research August 1996 15(4):320–334

    Google Scholar 

  49. Kinoshita H, Backstrom L, Flanagan JR, Johansson R (1997) Tangential torque effects on the control of grip forces when holding objects with precision grip. J Neurophysiol 78(3):1619–1630

    Google Scholar 

  50. Han HY, Shimada A, Kawamura S (1996) Analysis of friction on human fingers and design of artificial fingers’. Proc IEEE Int Conf Robot Autom, Minnesota 4(22–28):3061–3066

    Google Scholar 

  51. Han HY, Kawamura S (1999) Analysis of stiffness of human fingertip and comparison with artificial fingers. Proc IEEE Int Conf Syst Man and Cybernetics 2:800–805

    Google Scholar 

  52. Howard AM, Bekey GA (1999) Intelligent learning for deformable object manipulation. International Symposium on Computational Intelligence in Robotics and Automation, Monterey, pp 15–20

    Google Scholar 

  53. Xydas N, Kao I (1998) Modeling of contact mechanics with experimental results for soft fingers’. Proc IEEE Int Conf Intelligent Robots Syst, Japan 1(13–17):488–493

    Google Scholar 

  54. Xydas N, Kao I (1999) Modeling of contact and friction limit surfaces for soft fingers in robotics with experimental results. Proc IEEE Int Conf Intell Robots and Syst Japan 18(9):941–950

    Google Scholar 

  55. Xydas N, Kao I (2000) Influence of material properties and fingertip size on the power-law equation for soft fingers. Proc IEEE Int Conf Intell Robots and Sys Japan 2:1285–1290

    Google Scholar 

  56. Xydas N, Bhagavat M, Kao I (2000) Study of soft-finger contact mechanics using finite elements analysis and experiments. Proc Int Conf Robot Automation, San Francisco, April, 2000 3:2179–2184

    Article  Google Scholar 

  57. Chen SF, Kao I (2000) Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers. Int J Robotics Res 19(9):835–847

    Article  Google Scholar 

  58. Hirai S, Tsuboi T, Wada T (2001) Robust grasping manipulation of deformable objects. Proceedings of IEEE International Symposium on Assembly and Task Planning, Shige, pp 411–416

    Google Scholar 

  59. Park K.H., Kim B.H and Hirai S. (2003) Development of a soft-fingertip and its modeling based on force distribution. Proceedings of the 2003 I.E. International Conference on Robotics and Automation, Taipei, Taiwan, September 2003, pp. 3169–3174.

  60. Ramkumar SS, Wood DJ, Fox K, Harlock SC (2003) Developing a polymeric human finger sensor to study the frictional properties of textiles part I: artificial finger development. Text Res J 73(6):469–473

    Article  Google Scholar 

  61. Ramkumar SS, Wood DJ, Fox K, Harlock SC (2003) Developing a polymeric human finger sensor to study the frictional properties of textiles part II: experimental results. Text Res J 73(7):606–610

    Article  Google Scholar 

  62. Tiezzi P., Lotti F. and Vassura G. (2003) Polyurethane gel pulps for robotic fingers. Proceedings of IEEE International Conference on Advanced Robotics, ICAR 03, Italy, pp. 1–7.

  63. Kao I, Yang F (2004) Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Trans Robot Autom 20(1):132–135

    Article  Google Scholar 

  64. Ghafoor A, Dai JS, Duffy J (2004) Stiffness modeling of the soft-finger contact in robotic grasping. J Mech Des 126(4):646–656

    Article  Google Scholar 

  65. Hiruta T., Sugamoto S. and Kosuge K. (2005) Robustness of power grasp with human skin characteristics. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, 24–28 July, 2005, pp. 881–886.

  66. Biagiotti L, Tiezzi P, Vassura G, Melchiorri C (2005) Modelling and controlling the compliance of a robotic hand with soft finger-pads. In Multi-point Inter with Real and Virt Objects, Springer 18:55–73

    Article  Google Scholar 

  67. Hosoda K, Tada Y, Asada M (2005) Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot Auton Syst 54(2):104–109

    Article  Google Scholar 

  68. Derler S, Schrade U, Gerhardt IC (2007) Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263:1112–1116

    Article  Google Scholar 

  69. Liu X, Yue Z, Cai Z, Chetwynd DG, Smith ST (2008) Quantifying touch-feel perception: tribological aspects. Measure Sci Technol 19:1–9

    Google Scholar 

  70. Fei S, Childs THC, Henson B (2009) Developing an artificial fingertip with human friction properties. Tribol Int 42(11–12):1575–1581

    Google Scholar 

  71. Elango N, Ph.D. thesis titled Investigation on the suitability of different soft materials and configurations for robot fingers. 2009.

  72. Elango N, Marappan R (2011) Analysis on the fundamental deformation effect of a robot soft finger and its contact width during power grasping. Int J Adv Manuf Technol 52(5):797–804

    Article  Google Scholar 

  73. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–591

    Article  MATH  Google Scholar 

  74. Ogden RW (1972) Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubber like solids. Proc Royal Soc of London, Series A, Math Phys Sci 326(1567):565–584

    Article  MATH  Google Scholar 

  75. Arruda EM, Boyce MC (1993) A three dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J Mechan Physics Sol 41:389

    Article  Google Scholar 

  76. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771

    Article  Google Scholar 

  77. Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Tech 69:59–61

    Article  MathSciNet  Google Scholar 

  78. Maeno T, Kobayashi K, Yamazaki N (1998) Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int J 41(1):94–100

    Article  Google Scholar 

  79. Stavroulaki ME, Stavroulakis GE (2002) Unilateral contact applications using FEM software. Int J Appl Math Comput Sci 12(1):115–125

    MathSciNet  MATH  Google Scholar 

  80. Wu JZ, Dong DG, Smutz WP, Schopper AW (2003) Modeling of time-dependent force response of fingertip to dynamic loading. J Biomech 36(3):383–392

    Article  Google Scholar 

  81. Wu JZ, Dong DG, Rakheja S, Schopper AW, Smutz WP (2004) A structural fingertip model for simulating of the biomechanics of tactile sensation. Medical Eng Physics 26(2):165–175

    Article  Google Scholar 

  82. Tiezzi P, Kao I (2007) Modeling of viscoelastic contacts and evolution of limit surface for robotic contact interface. IEEE Trans Robot 23(2):206–217

    Article  Google Scholar 

  83. Renaud C, Cros JM, Feng ZQ, Yang B (2009) The Yeoh model applied to the modelling of large deformation contact/impact problems. Int J Impact Eng 36:659–666

    Article  Google Scholar 

  84. Fei S, Childs THC, Henson B (2009) Developing an artificial fingertip with human friction properties. Tribol Int 42(11–12):1575–1581

    Google Scholar 

  85. Giovanni Berselli, Gabriele Vassura (2010), ‘Nonlinear modeling and experimental evaluation of fluid-filled soft pads for robotic hands’, 9th Youth Symposium on Experimental Solid Mechanics, Trieste, Italy, July 7–10, pp. 68–73

  86. Venkateshraja K, Malayalamurthi R (2011) Assessment on assorted hyper-elastic material models applied for large deformation soft finger contact problems. Int J Mechan Materials Design 7(4):299–305

    Article  Google Scholar 

  87. Bakhy SH, Hassan SS, Nacy SM, Dermitzakis K, Arieta AH (2013) Contact mechanics for soft robotic fingers: modeling and experimentation. Robotica 31(4):599–609

    Article  Google Scholar 

  88. Venkateshraja K, Malayalamurthi R (2014) Assessment and influence of internal rigid core on the contact parameters for soft hemispherical fingertips. J Polym Eng 34(2):145–152

    Google Scholar 

  89. Elango N., Faudzi A.A.M., Rusydi M.R.M., Nordin I.N.A.M., (2014) Determination of non-linear material constants of RTV silicone applied to a soft actuator for robotic applications. Key Engineering Materials, Vols. 594–595, pp 1099–1104

  90. Elango N, Faudzi AAM, Hassan A, Rusydi MRM (2014) Experimental investigations of skin-like material and computation of its material properties. Int J Precis Eng Manuf 15(9):1909–1914

    Article  Google Scholar 

  91. Cha H-J, Koh KC, Yi B-J (2014) Stiffness modeling of a soft finger. Int J Control Autom Syst 12(1):111–117

    Article  Google Scholar 

  92. Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A (2014) Adaptive synergies for the design and control of the Pisa/IIT softhand. Int J Robot Res 33(5):768–782

    Article  Google Scholar 

  93. Luyt AS, Dramicanin MD, Antic Z, Djokovic V (2009) Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polym Test 28:348–356

    Article  Google Scholar 

  94. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD (2011) Evaluation of mechanical and thermal properties of poly (butylene terephthalate) (PBT) composites reinforced with wollastonite. Trans Indian Inst Met 64:127–132

    Article  Google Scholar 

  95. Alexandre M, Dubois P (2000) Polymer-Layered Silicate Nano Composites: Preparation, Properties and Use of a New Class of Materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  96. Gorga RE, Cohen RE (2004) Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotube, journal of polymer science. Part B: Polymer Physics 42(14):2690–2702

    Article  Google Scholar 

  97. Chen B, Evans JR, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer-clay nanocomposites. Chem Soc Rev 37:568–594

    Article  Google Scholar 

  98. Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opinion Solid State Mater Sci 6(3):205–212

    Article  Google Scholar 

  99. Mortazavi V, Atai M, Fathi M, Keshavarzi S, Khalighinejad N, Badrian H (2012) The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites. Dent Res J (Isfahan) 9(3):273–80

    Google Scholar 

  100. Fatemeh, M. (2012) Effect of filler on flexural properties and scanning electron microscopic analysis of fractured surfaces of nanocomposites. Proceedings of International Conference on Innovations in Chemical Engineering and Medical Sciences, pp. 6–10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Elango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elango, N., Faudzi, A.A.M. A review article: investigations on soft materials for soft robot manipulations. Int J Adv Manuf Technol 80, 1027–1037 (2015). https://doi.org/10.1007/s00170-015-7085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7085-3

Keywords

Navigation