Skip to main content
Log in

Calibration of the cutting process and compensation of the compliance error by using on-machine probing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper addresses the compensation of cutting process related errors in order to improve the accuracy of manufactured parts. The compensation is a modification of the tool dimension and the tool path using on-machine probing data. A cutting depth distribution-based approach is proposed to calibrate the cutting process according to the on-machine probed error model. This approach is investigated in cases of both rigid and compliant parts. The calibration offset is estimated for the actual cutting conditions with and without a fitting process. In the case study, the offset varies from 12 to 17 μm for down milling at 6000 rpm spindle speed. The impact of the cutting speed is investigated. A rectangular profile was machined with and without compensation in down and up milling mode. The results show that the proposed approach is effective. The error is reduced from a maximum of 25 μm for down milling and 10 μm for up milling to 4 μm in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hermann G (1985) Process intermittent measurement of tools and workpieces. J Manuf Syst 4(1):41–49

    Article  Google Scholar 

  2. Abbaszadeh-Mir Y, Mayer JRR, Cloutier G, Fortin C (2002) Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar. Int J Prod Res 40(18):4781–4797

    Article  MATH  Google Scholar 

  3. Ferreira PM, Liu CR (1993) A method for estimating and compensating quasistatic errors of machine tools. ASME J Eng Ind 115(1):149–159

    Article  Google Scholar 

  4. Sartori S, Zhang GX (1995) Geometric error measurement and compensation of machines. CIRP Ann Manuf Technol 44(2):599–609

    Article  Google Scholar 

  5. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675

    Article  Google Scholar 

  6. Lo C-C, Hsiao C-Y (1998) Method of tool path compensation for repeated machining process. Int J Mach Tools Manuf 38(3):205–213

    Article  Google Scholar 

  7. Bandy HT, Donmez MA, Gilsinn DE, Kennedy M, Yee KW, Ling AV, Wilkin ND (2001) A methodology for compensating errors detected by process-intermittent inspection. NIST Interagency/Intern Rep (NISTIR) 6811:1–77

    Google Scholar 

  8. Wang Z, Maropolous P (2013) Real-time error compensation of a three-axis machine tool using a laser tracker. Int J Adv Manuf Technol 69(1–4):919–933. doi:10.1007/s00170-013-5019-5

    Article  Google Scholar 

  9. Tsutsumi M, Tone S, Kato N, Sato R (2013) Enhancement of geometric accuracy of five-axis machining centers based on identification and compensation of geometric deviations. Int J Mach Tools Manuf 68:11–20. doi:10.1016/j.ijmachtools.2012.12.008

    Article  Google Scholar 

  10. Kakino Y, Ihara Y, Nakatsu Y, Okamura K (1987) The measurement of motion errors of NC machine tools and diagnosis of their origins by using telescoping magnetic ball bar method. CIRP Ann Manuf Technol 36:377–380. doi:10.1016/S0007-8506(07)62626-2

    Article  Google Scholar 

  11. Steinmetz CR (1990) Sub-micron position measurement and control on precision machine tools with laser interferometry. Precis Eng 12(1):12–24. doi:10.1016/0141-6359(90)90004-I

    Article  Google Scholar 

  12. Liebrich T, Bringmann B, Knapp W (2009) Calibration of a 3D-ball plate. Precis Eng 33(1):1–6. doi:10.1016/j.precisioneng.2008.02.003

    Article  Google Scholar 

  13. Erkan T, Mayer JRR, Dupont Y (2011) Volumetric distortion assessment of a five-axis machine by probing a 3D reconfigurable uncalibrated master ball artefact. Precis Eng 35(1):116–125. doi:10.1016/j.precisioneng.2010.08.003

    Article  Google Scholar 

  14. Ibaraki S, Iritani T, Matsushita T (2013) Error map construction for rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe. Int J Mach Tools Manuf 68:21–29. doi:10.1016/j.ijmachtools.2013.01.001

    Article  Google Scholar 

  15. Mayer J (2012) Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact. CIRP Annals Manuf Technol 61(1):515–518

    Article  Google Scholar 

  16. Dépincé P, Hascoët J-Y (2006) Active integration of tool deflection effects in end milling. Part 1. Prediction of milled surfaces. Int J Mach Tools Manuf 46(9):937–944. doi:10.1016/j.ijmachtools.2005.08.005

    Article  Google Scholar 

  17. Wan M, Zhang WH, Qin GH, Wang ZP (2008) Strategies for error prediction and error control in peripheral milling of thin-walled workpiece. Int J Mach Tools Manuf 48(12–13):1366–1374. doi:10.1016/j.ijmachtools.2008.05.005

    Article  Google Scholar 

  18. Guiassa R, Mayer JRR (2011) Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Ann Manuf Technol 60(1):391–394

    Article  Google Scholar 

  19. Guiassa R, Mayer JRR, Balazinski M, Engin S, Delorme FE (2014) Closed door machining error compensation of complex surfaces using the cutting compliance coefficient and on-machine measurement for a milling process. International Journal of Computer Integrated Manufacturing: 1–9. doi:10.1080/0951192x.2013.874577

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Guiassa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guiassa, R., Mayer, J.R.R., St-Jacques, P. et al. Calibration of the cutting process and compensation of the compliance error by using on-machine probing. Int J Adv Manuf Technol 78, 1043–1051 (2015). https://doi.org/10.1007/s00170-014-6714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6714-6

Keywords

Navigation