Skip to main content
Log in

Technical variables of ACL surgical reconstruction: effect on post-operative static laxity and clinical implication

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The hypothesis was that an alteration of different surgical variables of ACL reconstruction would produce significant changes in post-operative static laxity of knee joint.

Methods

Joint laxity was acquired by a surgical navigation system for 17 patients just after graft fixation during single-bundle reconstruction with extra-articular lateral tenodesis. The analysed laxity parameters were: internal/external rotation at 30° (IE30) and 90° (IE90) of flexion, varus/valgus rotation at 0° (VV0) and 30° (VV30) of flexion and anterior/posterior displacement at 30° (AP30) and 90° (AP90) of flexion. As surgical variables, the angles between the tibial tunnel and the three planes were defined as well as the lengths of the tunnel and the relationship between native footprints and tunnels. The same analysis was performed for the femoral side. All surgical variables were combined in a multivariate analysis to assess for predictive factors between them and post-operative laxities values. To quantify the performance of each multivariate model, the correlation ratio (η 2) and the corresponding P value (*P < 0.050) have been evaluated.

Results

Multivariate analysis underlined statistically significant models for the estimation of: AP30 (η 2 = 0.987; P = 0.014), IE30 (η 2 = 0.995; P = 0.005), IE90 (η 2 = 0.568; P = 0.010), VV0 (η 2 = 0.932; P = 0.003). The parameters that greatly affected the identified models were the orientation of the tibial tunnel with respect to the three anatomical planes. The estimation of AP30, IE30 and IE90 got lower value as the orientation of the tibial tunnel with respect to transverse plane decreases. Considering the orientation to sagittal (\(\theta_{\text{SAG}}^{T}\)) and coronal (\(\theta_{\text{COR}}^{T}\)) plane, we found that their reduction provoked a decrease in the estimation of AP30, IE30 and IE90 (except \(\theta_{\text{SAG}}^{T}\) that did not appear in the estimation of AP30). The estimation of VV0 got an increase of \(\theta_{\text{SAG}}^{T}\), and \(\theta_{\text{COR}}^{T}\) which led to a laxity reduction.

Conclusion

The main finding of the present in vivo study was the possibility to determine significant effects on post-operative static laxity level of different surgical variables of ACL reconstruction. In particular, the present study defined the conditions that minimize the different aspects of post-operative laxity at time-zero after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abebe ES, Utturkar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT III, De Frate LE (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44(5):924–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc Suppl 1:S2–S12

    Article  Google Scholar 

  3. Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39(2):366–373

    Article  PubMed  Google Scholar 

  4. Brophy RH, Voos JE, Shannon FJ, Granchi CC, Wickiewicz TL, Warren RF, Pearle AD (2008) Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament. Am J Sports Med 36(11):2196–2203

    Article  PubMed  Google Scholar 

  5. Brophy RH, Pearle AD (2009) Single-bundle anterior cruciate ligament reconstruction: a comparison of conventional, central, and horizontal single-bundle virtual graft positions. Am J Sports Med 37(7):1317–1323

    Article  PubMed  Google Scholar 

  6. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22(1):85–89

    Article  PubMed  Google Scholar 

  7. Goss BC, Hull ML, Howell SM (1997) Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension. J Orthop Res 15(2):263–268

    Article  CAS  PubMed  Google Scholar 

  8. Hantes ME, Zachos VC, Liantsis A, Venouziou A, Karantanas AH, Malizos KN (2009) Differences in graft orientation using the transtibial and anteromedial portal technique in ACL reconstruction: a magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc 17(8):880–886

    Article  PubMed  Google Scholar 

  9. Howell SM, Barad SJ (1995) Knee extension and its relationship to the slope of the intercondylar roof. Am J Sports Med 23(3):288–294

    Article  CAS  PubMed  Google Scholar 

  10. Howell SM, Deutsch ML (1999) Comparison of endoscopic and two-incision techniques for reconstructing a torn anterior cruciate ligament using hamstring tendons. Arthroscopy 15(6):594–606

    Article  CAS  PubMed  Google Scholar 

  11. Howell SM, Gittins ME, Gottlieb JE, Traina SM, Zoellner TM (2001) The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med 29(5):567–574

    CAS  PubMed  Google Scholar 

  12. Howell SM, Taylor MA (1996) Brace-free rehabilitation, with early return to activity, in knees reconstructed with a double-looped, semitendinosus and gracilis graft. J Bone Joint Surg Am 78(6):814–825

    Article  CAS  PubMed  Google Scholar 

  13. Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S49–S55

    Article  PubMed  Google Scholar 

  14. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH (2012) Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med 40(3):512–520

    Article  PubMed  Google Scholar 

  15. Järvelä T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15(5):500–507

    Article  PubMed  Google Scholar 

  16. Jepsen CF, Lundberg-Jensen AK, Faunoe P (2007) Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament reconstructed knee? A clinical, prospective, randomized, double-blind study. Arthroscopy 23(12):1326–1333

    Article  PubMed  Google Scholar 

  17. Kondo E, Merican AM, Yasuda K, Amis AA (2010) Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle. Am J Sports Med 38(7):1349–1358

    Article  PubMed  Google Scholar 

  18. Lee MC, Seong SC, Lee S, Chang CB, Park YK, Jo H, Kim CH (2007) Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 23(7):771–778

    Article  PubMed  Google Scholar 

  19. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304

    Article  PubMed  Google Scholar 

  20. Marcacci M, Zaffagnini S, Iacono F, Neri MP, Loreti I, Petitto A (1998) Arthroscopic intra- and extra-articular anterior cruciate ligament reconstruction with gracilis and semitendinosus tendons. Knee Surg Sports Traumatol Arthrosc 6(2):68–75

    Article  CAS  PubMed  Google Scholar 

  21. Markolf KL, Jackson SR, McAllister DR (2010) A comparison of 11 o’clock versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed knee: knee kinematics during a simulated pivot test. Am J Sports Med 38(5):912–917

    Article  PubMed  Google Scholar 

  22. Markolf KL, Hame S, Monte Hunter D, Oakes DA, Zoric B, Gause P, Finerman GA (2002) Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res 20(5):1016–1024

    Article  PubMed  Google Scholar 

  23. Martelli S, Lopomo N, Bignozzi S, Zaffagnini S, Visani A (2007) Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med 37(6):872–878

    Article  PubMed  Google Scholar 

  24. Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Knee Surg Sports Traumatol Arthrosc 22(7):1467–1482

    Article  CAS  PubMed  Google Scholar 

  25. Muneta T, Koga H, Mochizuki T (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23(6):618–628

    Article  PubMed  Google Scholar 

  26. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE, McMahon PJ, Fu FH (2005) Varying femoral tunnels between the anatomical footprint and isometric positions effect on kinematics of the anterior. Am J Sports Med 33(5):712–718

    Article  PubMed  Google Scholar 

  27. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    CAS  PubMed  Google Scholar 

  28. Rabuck SJ, Middleton KK, Maeda S, Fujimaki Y, Muller B, Araujo PH, Fu FH (2012) Individualized anatomic anterior cruciate ligament reconstruction. Arthrosc Tech 1(1):e23–e29

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shaerf DA, Pastides PS, Sarraf KM, Willis-Owen CA (2014) Anterior cruciate ligament reconstruction best practice: a review of graft choice. World J Orthop 5(1):23–29

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shelbourne KD, Klootwyk TE, Wilckens JH, De Carlo MS (1995) Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. Am J Sports Med 23(5):575–579

    Article  CAS  PubMed  Google Scholar 

  31. Signorelli C, Bonanzinga T, Lopomo N, Marcheggiani Muccioli GM, Bignozzi S, Filardo G, Zaffagnini S, Marcacci M (2013) Do pre-operative knee laxity values influence post-operative ones after anterior cruciate ligament reconstruction? Scand J Med Sci Sports 23(4):e219–e224

    Article  CAS  PubMed  Google Scholar 

  32. Signorelli C, Bonanzinga T, Grassi A, Lopomo N, Zaffagnini S, Marcacci M (2016) Predictive mathematical modeling of knee static laxity after ACL reconstruction: in vivo analysis. Comput Methods Biomech Biomed Engin 28:1–8

    Google Scholar 

  33. Simmons R, Howell SM, Hull ML (2003) Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg Am 85-A(6):1018–1029

    Article  PubMed  Google Scholar 

  34. Tardy N, Mouton C, Boisrenoult P, Theisen D, Beaufils P, Seil R (2014) Rotational profile alterations after anatomic posterolateral corner reconstructions in multiligament injured knees. Knee Surg Sports Traumatol Arthrosc 22(9):2173–2180

    Article  PubMed  Google Scholar 

  35. Van der Bracht H, Verhelst L, Stuyts B, Page B, Bellemans J, Verdonk P (2014) Anatomic single-bundle ACL surgery: consequences of tibial tunnel diameter and drill-guide angle on tibial footprint coverage. Knee Surg Sports Traumatol Arthrosc 22(5):1030–1039

    PubMed  Google Scholar 

  36. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22(3):240–251

    Article  PubMed  Google Scholar 

  37. Zaffagnini S, Bruni D, Martelli S, Imakiire N, Marcacci M, Russo A (2008) Double-bundle ACL reconstruction: influence of femoral tunnel orientation in knee laxity analysed with a navigation system—an in vitro biomechanical study. BMC Musculoskelet Disord 25:9–25

    Google Scholar 

  38. Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marcheggiani Muccioli GM, Bignozzi S, Visani A, Marcacci M (2012) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 20(1):153–159

    Article  CAS  PubMed  Google Scholar 

  39. Zaffagnini S, Martelli S, Acquaroli F (2004) Computer investigation of ACL orientation during passive range of motion. Comput Biol Med 34(2):153–163

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zaffagnini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by Italian Ministry of Health, Progetto RF Ministero Salute [grant number 2010-2312173].

Ethical approval

Provided by the Institutional Review Board.

Informed consent

Informed consent was obtained from all the participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaffagnini, S., Signorelli, C., Bonanzinga, T. et al. Technical variables of ACL surgical reconstruction: effect on post-operative static laxity and clinical implication. Knee Surg Sports Traumatol Arthrosc 24, 3496–3506 (2016). https://doi.org/10.1007/s00167-016-4320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4320-x

Keywords

Navigation