Skip to main content
Log in

Evaluating posterior cruciate ligament injury by using two-dimensional ultrasonography and sonoelastography

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study aimed to elucidate the diagnostic criteria for posterior cruciate ligament (PCL) injury using ultrasonography.

Methods

Thirty-three patients with clinically suspected PCL injuries and 30 normal control subjects were recruited. Both groups were assessed using sonographic examination with reliability testing. Patients also underwent posterior stress radiography and magnetic resonance imaging (MRI). PCL thickness on two-dimensional ultrasonography (2D US), pixel intensity on sonoelastography, displacement on posterior stress view, and severity grading using MRI were analysed. Receiver operating characteristic (ROC) curves were plotted using MRI as the gold standard. Correlation coefficients among variables were calculated.

Results

Good to excellent reliabilities were noted for 2D US and red pixel intensity on sonoelastography. In injured knees, PCL thicknesses were significantly greater, and red pixel intensities were significantly lower, compared to non-injured knees of patients and healthy controls. This indicates increased swelling and softness in injured PCLs. The area under the PCL thickness ROC curve was 0.917 (p < 0.001), and the best diagnostic criterion was a thickness ≥6.5 mm (90.6 % sensitivity and 86.7 % specificity). Thickness correlated with red pixel intensity, International Knee Documentation Committee examination grade, and MRI severity grading. In addition, effusions were detected on 2D US in all knees with “tears” of other structures on MRI.

Conclusions

2D US is a useful tool to diagnose PCL injury, and PCL thickness ≥6.5 mm is the recommended diagnostic criterion.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahn JH, Lee SH, Choi SH, Wang JH, Jang SW (2011) Evaluation of clinical and magnetic resonance imaging results after treatment with casting and bracing for the acutely injured posterior cruciate ligament. Arthroscopy 27(12):1679–1687

    Article  PubMed  Google Scholar 

  2. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F (2015) Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology 274(3):821–829

    Article  PubMed  Google Scholar 

  3. Brandenburg JE, Eby SF, Song P, Zhao H, Brault JS, Chen S, An KN (2014) Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil 95(11):2207–2219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho KH, Lee DC, Chhem RK, Kim SD, Bouffard JA, Cardinal E, Park BH (2001) Normal and acutely torn posterior cruciate ligament of the knee at US evaluation: preliminary experience. Radiology 219(2):375–380

    Article  CAS  PubMed  Google Scholar 

  5. Colvin AC, Meislin RJ (2009) Posterior cruciate ligament injuries in the athlete: diagnosis and treatment. Bull NYU Hosp Jt Dis 67(1):45–51

    PubMed  Google Scholar 

  6. Garavaglia G, Lubbeke A, Dubois-Ferriere V, Suva D, Fritschy D, Menetrey J (2007) Accuracy of stress radiography techniques in grading isolated and combined posterior knee injuries: a cadaveric study. Am J Sports Med 35(12):2051–2056

    Article  PubMed  Google Scholar 

  7. Gross ML, Grover JS, Bassett LW, Seeger LL, Finerman GA (1992) Magnetic resonance imaging of the posterior cruciate ligament. Clinical use to improve diagnostic accuracy. Am J Sports Med 20(6):732–737

    Article  CAS  PubMed  Google Scholar 

  8. Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1(3–4):226–234

    Article  CAS  PubMed  Google Scholar 

  9. Hong BY, Lee JI, Kim HW, Cho YR, Lim SH, Ko YJ (2011) Detectable threshold of knee effusion by ultrasonography in osteoarthritis patients. Am J Phys Med Rehabil 90(2):112–118

    Article  PubMed  Google Scholar 

  10. Hong BY, Lim SH, Cho YR, Kim HW, Ko YJ, Han SH, Lee JI (2010) Detection of knee effusion by ultrasonography. Am J Phys Med Rehabil 89(9):715–721

    Article  PubMed  Google Scholar 

  11. Hoyt M, Goodemote P, Morton J (2010) How accurate is an MRI at diagnosing injured knee ligaments? J Fam Pract 59(2):118–120

    PubMed  Google Scholar 

  12. Hsu CC, Tsai WC, Chen CP, Yeh WL, Tang SF, Kuo JK (2005) Ultrasonographic examination of the normal and injured posterior cruciate ligament. J Clin Ultrasound 33(6):277–282

    Article  PubMed  Google Scholar 

  13. Jacobsen K (1976) Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand 47(3):334–335

    Article  Google Scholar 

  14. Jacobson J (2013) Fundamentals of musculoskeletal ultrasound, 2nd edn. Elsevier Saunders, Philedelphia

    Google Scholar 

  15. Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR (2014) Sonoelastography: musculoskeletal applications. Radiology 272(3):622–633

    Article  PubMed  Google Scholar 

  16. Kwon DR, Park GY, Lee SU, Chung I (2012) Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology 263(3):794–801

    Article  PubMed  Google Scholar 

  17. Miller TT (2002) Sonography of injury of the posterior cruciate ligament of the knee. Skelet Radiol 31(3):149–154

    Article  Google Scholar 

  18. Obuchowski NA (2005) ROC analysis. AJR Am J Roentgenol 184(2):364–372

    Article  PubMed  Google Scholar 

  19. Ooi CC, Malliaras P, Schneider ME, Connell DA (2013) “Soft, hard, or just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol 43(1):1–12

    Article  Google Scholar 

  20. Ruan Z, Zhao B, Qi H, Zhang Y, Zhang F, Wu M, Shao G (2015) Elasticity of healthy Achilles tendon decreases with the increase of age as determined by acoustic radiation force impulse imaging. Int J Clin Exp Med 8(1):1043–1050

    PubMed  PubMed Central  Google Scholar 

  21. Shen ZL, Vince DG, Li ZM (2013) In vivo study of transverse carpal ligament stiffness using acoustic radiation force impulse (ARFI) imaging. PLoS ONE 8(7):e68569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorrentino F, Iovane A, Nicosia A, Candela F, Midiri M, Lagalla R (2009) Role of high-resolution ultrasonography without and with real-time spatial compound imaging in evaluating the injured posterior cruciate ligament: preliminary study. Radiol Med 114(2):312–320

    Article  CAS  PubMed  Google Scholar 

  23. Tudisco C, Bisicchia S, Stefanini M, Antonicoli M, Masala S, Simonetti G (2015) Tendon quality in small unilateral supraspinatus tendon tears. Real-time sonoelastography correlates with clinical findings. Knee Surg Sports Traumatol Arthrosc 23(2):393–398

    Article  PubMed  Google Scholar 

  24. Vaz CE, Camargo OP, Santana PJ, Valezi AC (2005) Accuracy of magnetic resonance in identifying traumatic intraarticular knee lesions. Clinics (Sao Paulo) 60(6):445–450

    Article  Google Scholar 

  25. Wang CJ (2002) Injuries to the posterior cruciate ligament and posterolateral instabilities of the knee. Chang Gung Med J 25(5):288–297

    PubMed  Google Scholar 

  26. Wang CJ, Weng LH, Hsu CC, Chan YS (2004) Arthroscopic single- versus double-bundle posterior cruciate ligament reconstructions using hamstring autograft. Injury 35(12):1293–1299

    Article  PubMed  Google Scholar 

  27. Wang TG, Chen WS, Wang YC, Wu CH, Hsiao MY, Chang KV (2014) Musculoskeletal ultrasound examination. Leader Book, Taipei

    Google Scholar 

  28. Wind WM Jr, Bergfeld JA, Parker RD (2004) Evaluation and treatment of posterior cruciate ligament injuries: revisited. Am J Sports Med 32(7):1765–1775

    Article  PubMed  Google Scholar 

  29. Winters K, Tregonning R (2005) Reliability of magnetic resonance imaging of the traumatic knee as determined by arthroscopy. N Z Med J 118(1209):U1301

    PubMed  Google Scholar 

  30. Yavuz A, Bora A, Bulut MD, Batur A, Milanlioglu A, Goya C, Andic C (2015) Acoustic Radiation Force Impulse (ARFI) elastography quantification of muscle stiffness over a course of gradual isometric contractions: a preliminary study. Med Ultrason 17(1):49–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Science and Technology in Taiwan, ROC. (NSC 102-2628-B-182A-006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung-Cheng Huang or Ching-Jen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Lin-Yi Wang and Tsung-hsun Yang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LY., Yang, Th., Huang, YC. et al. Evaluating posterior cruciate ligament injury by using two-dimensional ultrasonography and sonoelastography. Knee Surg Sports Traumatol Arthrosc 25, 3108–3115 (2017). https://doi.org/10.1007/s00167-016-4139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4139-5

Keywords

Navigation