Skip to main content
Log in

Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The goal of this study is to compare the cartilage of anterior cruciate ligament (ACL)-reconstructed and uninjured contralateral knees using T MRI 12–16 months after ACL reconstructions.

Methods

Eighteen patients with ACL-reconstructed knees (10 women, 8 men, mean age = 38.3 ± 7.8 years) were studied using 3T MRI. Injured and contralateral knee MR studies were acquired 12–16 months post-operatively. Cartilage sub-compartment T values of each injured knee were compared with the contralateral knee’s values. Subgroup analysis of sub-compartment T values in both knees was performed between patients with and without meniscal tears at the time of ACL reconstruction using a paired Student’s t test.

Results

In ACL-injured knees, the T values of the medial tibia (MT) and medial femoral condyle (MFC) were significantly elevated at 12–16 months follow-up compared to contralateral knees. Patients with a medial meniscal tear had higher MFC and MT T values compared to respective regions in contralateral knees. Patients with lateral meniscal tears had higher lateral femoral condyle and LT T values compared to respective regions in contralateral knees. There were no differences between the injured and contralateral knees of patients without meniscal tears.

Conclusions

T MRI can detect significant changes in the medial compartments’ cartilage matrix of ACL-reconstructed knees at 1 year post-operatively compared to contralateral knees. The presence of a meniscal tear at the time of ACL reconstruction is a risk factor for cartilage matrix degeneration in the femorotibial compartments on the same side as the meniscal tear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akella SV, Regatte RR, Gougoutas AJ, Borthakur A, Shapiro EM, Kneeland JB, Leigh JS, Reddy R (2001) Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med 46(3):419–423

    Article  CAS  PubMed  Google Scholar 

  2. Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 90(9):1922–1931

    Article  PubMed  Google Scholar 

  3. Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 14(4):270–275

    Article  CAS  PubMed  Google Scholar 

  4. Barrack RL, Bruckner JD, Kneisl J, Inman WS, Alexander AH (1990) The outcome of nonoperatively treated complete tears of the anterior cruciate ligament in active young adults. Clin Orthop Relat Res 259:192–199

    PubMed  Google Scholar 

  5. Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, Steinbach LS, Majumdar S (2004) A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthr Cartil 12(12):997–1005

    Article  PubMed  Google Scholar 

  6. Carballido-Gamio J, Bauer J, Lee KY, Krause S, Majumdar S (2005) Combined image processing techniques for characterization of MRI cartilage of the knee. Conf Proc IEEE Eng Med Biol Soc 3:3043–3046

    PubMed  Google Scholar 

  7. Carpenter RD, Majumdar S, Ma CB (2009) Magnetic resonance imaging of 3-dimensional in vivo tibiofemoral kinematics in anterior cruciate ligament-reconstructed knees. Arthroscopy 25(7):760–766

    Article  PubMed  Google Scholar 

  8. Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP (2008) Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 40(2):215–222

    Article  PubMed  Google Scholar 

  9. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22(5):632–644

    Article  CAS  PubMed  Google Scholar 

  10. Dijkgraaf LC, de Bont LG, Boering G, Liem RS (1995) The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg 53(10):1182–1192

    Article  CAS  PubMed  Google Scholar 

  11. Dijkgraaf LC, Liem RS, de Bont LG (1998) Temporomandibular joint osteoarthritis and crystal deposition diseases: a study of crystals in synovial fluid lavages in osteoarthritic temporomandibular joints. Int J Oral Maxillofac Surg 27(4):268–273

    Article  CAS  PubMed  Google Scholar 

  12. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS (1997) T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med 38(6):863–867

    Article  CAS  PubMed  Google Scholar 

  13. Feagin JA Jr (1979) The syndrome of the torn anterior cruciate ligament. Orthop Clin North Am 10(1):81–90

    PubMed  Google Scholar 

  14. Ferretti A, Conteduca F, De Carli A, Fontana M, Mariani PP (1991) Osteoarthritis of the knee after ACL reconstruction. Int Orthop 15(4):367–371

    Article  CAS  PubMed  Google Scholar 

  15. Griffith CJ, Wijdicks CA, Goerke U, Michaeli S, Ellermann J, LaPrade RF (2011) Outcomes of untreated posterolateral knee injuries: an in vivo canine model. Knee Surg Sports Traumatol Arthrosc 19(7):1192–1197

    Article  PubMed  Google Scholar 

  16. Hawkins RJ, Misamore GW, Merritt TR (1986) Followup of the acute nonoperated isolated anterior cruciate ligament tear. Am J Sports Med 14(3):205–210

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Han ET, Busse RF, Majumdar S (2008) In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med 59(2):298–307

    Article  PubMed Central  PubMed  Google Scholar 

  18. Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S (2005) In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 54(4):929–936

    Article  PubMed  Google Scholar 

  19. Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link TM, Ma CB, Majumdar S (2011) Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2–initial experience with 1-year follow-up. Radiology 258(2):505–514

    Article  PubMed  Google Scholar 

  20. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152

    Article  CAS  PubMed  Google Scholar 

  21. Makela HI, Grohn OH, Kettunen MI, Kauppinen RA (2001) Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions. Biochem Biophys Res Commun 289(4):813–818

    Article  CAS  PubMed  Google Scholar 

  22. Marks PH, Donaldson ML (2005) Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate ligament-deficient knee. Arthroscopy 21(11):1342–1347

    Article  PubMed  Google Scholar 

  23. McDaniel WJ Jr, Dameron TB Jr (1980) Untreated ruptures of the anterior cruciate ligament. A follow-up study. J Bone Joint Surg Am 62(5):696–705

    PubMed  Google Scholar 

  24. Menezes NM, Gray ML, Hartke JR, Burstein D (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51(3):503–509

    Article  CAS  PubMed  Google Scholar 

  25. Muriuki MG, Tuason DA, Tucker BG, Harner CD (2011) Changes in tibiofemoral contact mechanics following radial split and vertical tears of the medial meniscus an in vitro investigation of the efficacy of arthroscopic repair. J Bone Joint Surg Am 93(12):1089–1095

    Article  CAS  PubMed  Google Scholar 

  26. Noyes FR, McGinniss GH, Mooar LA (1984) Functional disability in the anterior cruciate insufficient knee syndrome. Review of knee rating systems and projected risk factors in determining treatment. Sports Med 1(4):278–302

    Article  CAS  PubMed  Google Scholar 

  27. Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am 65(2):154–162

    CAS  PubMed  Google Scholar 

  28. Redfield AG (1969) Nuclear spin thermodynamics in the rotating frame. Science 164(3883):1015–1023

    Article  CAS  PubMed  Google Scholar 

  29. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R (2006) T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 23(4):547–553

    Article  PubMed  Google Scholar 

  30. Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 3(4):261–267

    Article  CAS  PubMed  Google Scholar 

  31. Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G (2009) The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic investigation. Arthroscopy 25(2):123–130

    Article  PubMed Central  PubMed  Google Scholar 

  32. Shelbourne KD, Gray T (2000) Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery. Five- to fifteen-year evaluations. Am J Sports Med 28(4):446–452

    CAS  PubMed  Google Scholar 

  33. Theologis AA, Kuo D, Cheng J, Bolbos RI, Carballido-Gamio J, Ma CB, Li X (2011) Evaluation of bone bruises and associated cartilage in anterior cruciate ligament-injured and -reconstructed knees using quantitative t(1rho) magnetic resonance imaging: 1-year cohort study. Arthroscopy 27(1):65–76

    Article  PubMed Central  PubMed  Google Scholar 

  34. von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63(3):269–273

    Article  Google Scholar 

  35. Werier J, Keating JF, Meek RN (1998) Complete dislocation of the knee—the long-term results of ligamentous reconstruction. Knee 5(4):255–260

    Article  Google Scholar 

  36. Wright V (1990) Post-traumatic osteoarthritis—a medico-legal minefield. Br J Rheumatol 29(6):474–478

    Article  CAS  PubMed  Google Scholar 

  37. Wu WH, Hackett T, Richmond JC (2002) Effects of meniscal and articular surface status on knee stability, function, and symptoms after anterior cruciate ligament reconstruction: a long-term prospective study. Am J Sports Med 30(6):845–850

    PubMed  Google Scholar 

  38. Zuo J, Li X, Banerjee S, Han E, Majumdar S (2007) Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging 26(4):1001–1009

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health grants K25 AR053633 and R01 AR46905.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theologis, A.A., Haughom, B., Liang, F. et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc 22, 298–307 (2014). https://doi.org/10.1007/s00167-013-2397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2397-z

Keywords

Navigation