Skip to main content
Log in

High intensity running results in an impaired neuromuscular response in ACL reconstructed individuals

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Anterior cruciate ligament (ACL) reconstruction reestablishes electromyographic activity during moderate activities such as walking but is unclear if this is also the case in sports activities such as high intensity running that results in accumulation of metabolic fatigue. Nine bone-patella tendon-bone ACL reconstructed athletes were evaluated 19.2 (5.7) months post-operatively using a telemetric electromyographic system. The neuromuscular response of vastus lateralis and biceps femoris muscles was tested bilaterally on separate occasions during 10 min running at moderate intensity (20% below the lactate threshold) and 10 min running at high intensity (40% above the lactate threshold). During moderate intensity running, electromyographic activity did not change for either leg. During high intensity running, electromyographic activity did not change for the vastus lateralis of the ACL reconstructed leg [267.8 (142.8)–263.8 (128.9) μV, P > 0.05] while it increased significantly [294.2 (120.6)–317.1 (140.5) μV, P = 0.03] for the vastus lateralis of the intact leg. High intensity exercise that is associated with accumulation of metabolic fatigue, results in an impaired neuromuscular response for the vastus lateralis muscle of the ACL reconstructed leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Augustsson J, Thomee R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:350–356. doi:10.1007/s00167-004-0518-4

    Article  PubMed  Google Scholar 

  2. Augustsson J, Thomee R, Linden C, Folkesson M, Tranberg R, Karlsson J (2006) Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis. Scand J Med Sci Sports 16:111–120. doi:10.1111/j.1600-0838.2005.00446.x

    Article  PubMed  CAS  Google Scholar 

  3. Bryant AL, Kelly J, Hohmann E (2008) Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction. J Orthop Res 26:126–135. doi:10.1002/jor.20472

    Article  PubMed  Google Scholar 

  4. Bulgheroni P, Bulgheroni MV, Andrini L, Guffanti P, Giughello A (1997) Gait patterns after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 5:14–21. doi:10.1007/s001670050018

    Article  PubMed  CAS  Google Scholar 

  5. Bush-Joseph CA, Hurwitz DE, Patel RR, Bahrani Y, Garretson R, Bach BR Jr, Andriacchi TP (2001) Dynamic function after anterior cruciate ligament reconstruction with autologous patellar tendon. Am J Sports Med 29:36–41

    PubMed  CAS  Google Scholar 

  6. Carter H, Pringle JSM, Jones AM, Doust JH (2002) Oxygen uptake kinetics during treadmill running across exercise intensity domains. Eur J Appl Physiol 86:347–354. doi:10.1007/s00421-001-0556-2

    Article  PubMed  CAS  Google Scholar 

  7. Cheng B, Kuipers A, Snuder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13:518–522. doi:10.1055/s-2007-1021309

    Article  PubMed  CAS  Google Scholar 

  8. Ciccotti MG, Kerlan RK, Perry J, Pink M (1994) An electromyographic analysis of the knee during functional activities: II. The anterior cruciate ligament-deficient and -reconstructed profiles. Am J Sports Med 22:651–658. doi:10.1177/036354659402200513

    Article  PubMed  CAS  Google Scholar 

  9. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    PubMed  CAS  Google Scholar 

  10. DeLee J, Drez D, Miller M (2003) DeLee & Drez’s orthopaedic sports medicine: principles and clinical practise. Saunders, Philadelphia

    Google Scholar 

  11. De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163

    Google Scholar 

  12. Drechsler WI, Cramp MC, Scott OM (2006) Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol 98:613–623. doi:10.1007/s00421-006-0311-9

    Article  PubMed  Google Scholar 

  13. Dyhre Poulsen P, Krogsgaard MR (2000) Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191–2195

    PubMed  CAS  Google Scholar 

  14. Freriks B, Hermens H, Disselhorst-Klug C, Rau G (1999) The recommendations for sensors and sensor placement procedures for surface electromyography. In: Hermens HJ (ed) European recommendations for surface electromyography. Roessingh Research and Development, Enschede, pp 15–53

    Google Scholar 

  15. Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71. doi:10.1249/00003677-199600240-00004

    Article  PubMed  CAS  Google Scholar 

  16. Green HJ, Patla AE (1992) Maximal aerobic power: neuromuscular and metabolic considerations. Med Sci Sports Exerc 24:38–46

    PubMed  CAS  Google Scholar 

  17. Hawkins RD, Hulse MA, Wilkinson C, Hodson A, Gibson M (2001) The association football medical research programme: an audit of injuries in professional football. Br J Sports Med 35:43–47. doi:10.1136/bjsm.35.1.43

    Article  PubMed  CAS  Google Scholar 

  18. Kalund S, Sinkjaer T, Arendt-Nielsen L, Simonsen O (1990) Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am J Sports Med 18:245–248. doi:10.1177/036354659001800304

    Article  PubMed  CAS  Google Scholar 

  19. Keays SL, Bullock-Saxton JE, Keays AC, Newcombe PA, Bullock MI (2007) A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med 35:729–739. doi:10.1177/0363546506298277

    Article  PubMed  Google Scholar 

  20. Knoll Z, Kiss RM, Kocsis L (2004) Gait adaptation in ACL deficient subjects before and after anterior cruciate ligament reconstruction surgery. J Electromyogr Kinesiol 14:287–294. doi:10.1016/j.jelekin.2003.12.005

    Article  PubMed  Google Scholar 

  21. Kobayashi A, Higuchi H, Terauchi M, Kobayashi F, Kimura M, Takagishi K (2004) Muscle performance after anterior cruciate ligament reconstruction. Int Orthop 28:48–51. doi:10.1007/s00264-003-0502-5

    Article  PubMed  CAS  Google Scholar 

  22. Konishi Y, Fukubayashi T, Takeshita D (2002) Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports 12:371–375. doi:10.1034/j.1600-0838.2002.01293.x

    Article  PubMed  CAS  Google Scholar 

  23. Lewek M, Rudolph K, Axe M, Snyder-Mackler L (2002) The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 17:56–63. doi:10.1016/S0268-0033(01)00097-3

    Article  Google Scholar 

  24. Limbird TJ, Shiavi R, Frazer M, Borra H (1988) EMG profiles of knee joint musculature during walking: changes induced by anterior cruciate ligament deficiency. J Orthop Res 6:630–638. doi:10.1002/jor.1100060503

    Article  PubMed  CAS  Google Scholar 

  25. Mattacola CG, Perrin DH, Gansneder BM, Gieck JH, Saliba EN, McCue FCIII (2002) Strength, functional outcome, and postural stability after anterior cruciate ligament reconstruction. J Athl Train 37:262–268

    PubMed  Google Scholar 

  26. McDonald JM, Farina D, Marcora SM (2008) Response of electromyographic variables during incremental and fatiguing cycling. Med Sci Sports Exerc 40:335–344. doi:10.1249/mss.0b013e31815b491e

    Article  Google Scholar 

  27. McHugh MP, Tyler TF, Nicholas SJ, Browne MG, Gleim GW (2001) Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 31:25–32

    PubMed  CAS  Google Scholar 

  28. Merletti R, Hermens HJ (2004) Detection and conditioning of the surface EMG signal. In: Merletti R, Parker P (eds) Electromyography: physiology, engineering and non-invasive applications. Wiley, New Jersey, pp 107–131

    Google Scholar 

  29. Neeter C (2007) Knee function after anterior cruciate ligament injury: with special reference to muscle power, hop performance and kinematics during high-intensity running. Doctoral dissertation, University of Goteborg, Sweden

  30. Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77–95. doi:10.1016/S0966-6362(97)00038-6

    Article  PubMed  Google Scholar 

  31. Petrofsky JS (1979) Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer. Eur J Appl Physiol 41:1–15. doi:10.1007/BF00424464

    Article  CAS  Google Scholar 

  32. Sabapathy S, Schneider DA, Morris NR (2005) The VO2 slow component: relationship between plasma ammonia and EMG activity. Med Sci Sports Exerc 37:1502–1509. doi:10.1249/01.mss.0000182497.43221.e1

    Article  PubMed  CAS  Google Scholar 

  33. Saunders MJ, Evans EM, Arngrimsson SA, Allison JD, Warren GL, Cureton KJ (2000) Muscle activation and the slow component rise in oxygen uptake during cycling. Med Sci Sports Exerc 32:2040–2045. doi:10.1097/00005768-200012000-00012

    Article  PubMed  CAS  Google Scholar 

  34. Shinohara M, Moritani T (1992) Increase in neuromuscular activity and oxygen uptake during heavy exercise. Ann Physiol Anthropol 11:257–262

    PubMed  CAS  Google Scholar 

  35. Snyder-Mackler L, Binder-Macleod SA, Williams PR (1993) Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sports Exerc 25:783–789. doi:10.1249/00005768-199307000-00005

    Article  PubMed  CAS  Google Scholar 

  36. Solomonow M, Baratta R, Zhou BH, Shoji BoseW, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213. doi:10.1177/036354658701500302

    Article  PubMed  CAS  Google Scholar 

  37. Taylor AD, Bronks R (1994) Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running. Eur J Appl Physiol 69:508–515. doi:10.1007/BF00239868

    Article  CAS  Google Scholar 

  38. Van Lent ME, Drost MR, vd Wildenberg FA (1994) EMG profiles of ACL-deficient patients during walking: the influence of mild fatigue. Int J Sports Med 15:508–514. doi:10.1055/s-2007-1021096

    Article  PubMed  Google Scholar 

  39. Whaley MH, Brubaker PH, Otto RM (2005) ACSM’s Guidelines for exercise testing and prescription. American College of Sports Medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  40. Zhang LQ, Minorik JM, Lin F, Koh JL, Makhsous M, Bai Z (2001) ACL strain during simulated free-speed walking. In: Proceedings of the 25th annual meeting of the American Society of Biomechanics. San Diego

Download references

Acknowledgments

This research project (PENED03) is co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). Dr. Stergiou is supported by the NIH (K25HD047194), the NIDRR (H133G040118) and the Nebraska Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios D. Georgoulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patras, K., Ziogas, G., Ristanis, S. et al. High intensity running results in an impaired neuromuscular response in ACL reconstructed individuals. Knee Surg Sports Traumatol Arthrosc 17, 977–984 (2009). https://doi.org/10.1007/s00167-009-0822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0822-0

Keywords

Navigation