Skip to main content
Log in

A numerical study of a hollow water droplet falling in air

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We numerically study the dynamics of a hollow water droplet falling in the air under the action of gravity. The focus of our study is to investigate the effects of the difference in radii (thickness) of the hollow droplet, gravity and surface tension at the air–water interface on shape oscillations and the breakup dynamics of the hollow droplet. We found that the oscillations of the inner interface (inner air bubble) are mostly periodic, while the outer interface undergoes irregular oscillations due to the interaction with the surrounding air. Increasing the ‘thickness’ of the hollow droplet decreases the amplitude of oscillations which further decays with time for high surface tension. It is observed that for a fixed value of the ‘thickness’ and low surface tension, the hollow droplet undergoes transition from the oscillatory regime to the dripping regime as it falls. The velocity contours are used to explain the behaviour observed in the present study. The deformation and shape oscillations of the hollow droplet are also compared with those observed in the case of a normal droplet of equal liquid volume falling in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Saffren, M., Elleman, D.D., Rhim, W.K.: Normal modes of a compound drop, NASA Report 82N23420 (1982)

  2. Vu, T.V., Takakura, H., Wells, J.C., Minemoto, T.: Breakup modes of a laminar hollow water jet. J. Vis. 14, 307–309 (2011)

    Article  Google Scholar 

  3. Kumar, A., Gu, S., Kamnis, S.: Simulation of impact of a hollow droplet on a flat surface. Appl. Phys. A 109, 101–109 (2012)

    Article  Google Scholar 

  4. Kumar, A., Gu, S., Tabbara, H., Kamnis, S.: Study of impingement of hollow ZrO\(_2\) droplets onto a substrate. Surf. Coat. Technol. 220, 164–169 (2013)

    Article  Google Scholar 

  5. Deka, H., Biswas, G., Sahu, K.C., Kulkarni, Y., Dalal, A.: Coalescence dynamics of a compound drop on a deep liquid pool. J. Fluid Mech. 866(R2), 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  Google Scholar 

  7. Cheng, R.J.: Water drop freezing: ejection of microdroplets. Science 170, 1395–1396 (1970)

    Article  Google Scholar 

  8. Villermaux, E., Bossa, B.: Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697–702 (2009)

    Article  Google Scholar 

  9. Langmuir, I.: The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteorol. 5, 175–192 (1948)

    Article  Google Scholar 

  10. Aston, J.G.: Gas-filled hollow drops in aerosols. J. Colloid Interface Sci. 38, 547–553 (1972)

    Article  Google Scholar 

  11. Tripathi, M.K., Sahu, K.C., Govindarajan, R.: Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6, 6268 (2015)

    Article  Google Scholar 

  12. Tripathi, M.K., Sahu, K.C., Govindarajan, R.: Why a falling drop does not in general behave like a rising bubble. Sci. Rep. 4, 4771 (2014)

    Article  Google Scholar 

  13. Bhaga, D., Weber, M.E.: Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105, 61–85 (1981)

    Article  Google Scholar 

  14. Magnaudet, J., Mougin, G.: Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311–337 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hadamard, J.: Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. CR Acad. Sci 152, 1735–1738 (1911)

    MATH  Google Scholar 

  16. Rybczynski, W.: Über die fortschreitende bewegung einer flüssigen kugel in einem zähen medium. Bull. Acad. Sci. Cracovie A 1, 40–46 (1911)

    Google Scholar 

  17. Han, J., Tryggvason, G.: Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Phys. Fluids 11, 3650–3667 (1999)

    Article  Google Scholar 

  18. Jalaal, M., Mehravaran, K.: Fragmentation of falling liquid droplets in bag breakup mode. Int. J. Multiphase Flow 47, 115–132 (2012)

    Article  Google Scholar 

  19. Sussman, M., Smereka, P.: Axisymmetric free boundary problems. J. Fluid Mech. 341, 269–294 (1997)

    Article  MathSciNet  Google Scholar 

  20. Saffman, P.G.: On the rise of small air bubbles in water. J. Fluid Mech. 1, 249–275 (1956)

    Article  Google Scholar 

  21. Zenit, R., Magnaudet, J.: Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys. Fluids 20, 061702 (2008)

    Article  Google Scholar 

  22. Cano-Lozano, J.C., Martínez-Bazán, C., Magnaudet, J., Tchoufag, J.: Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys. Rev. Fluids 1, 053604 (2016)

    Article  Google Scholar 

  23. Edge, R.M., Grant, C.D.: The terminal velocity and frequency of oscillation of drops in pure systems. Chem. Eng. Sci. 26, 1001–1012 (1971)

    Article  Google Scholar 

  24. Koh, C.J., Leal, L.G.: The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid. Phys. Fluids A 1(8), 1309–1313 (1989)

    Article  Google Scholar 

  25. Koh, C.J., Leal, L.G.: An experimental investigation on the stability of viscous drops translating through a quiescent fluid. Phys. Fluids A 2(12), 2103–2109 (1990)

    Article  Google Scholar 

  26. Agrawal, M., Premlata, A.R., Tripathi, M.K., Karri, B., Sahu, K.C.: Nonspherical liquid droplet falling in air. Phys. Rev. E 95, 033111 (2017)

    Article  Google Scholar 

  27. Balla, M., Tripathi, M.K., Sahu, K.C.: Shape oscillations of a nonspherical water droplet. Phys. Rev. E 99, 023107 (2019)

    Article  Google Scholar 

  28. Deka, H., Tsai, P.-H., Biswas, G., Dalal, A., Ray, B., Wang, A.B.: Dynamics of formation and oscillation of non-spherical drops. Chem. Eng. Sci. 201, 413–423 (2019)

    Article  Google Scholar 

  29. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572–600 (2003)

    Article  MathSciNet  Google Scholar 

  30. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838–5866 (2009)

    Article  MathSciNet  Google Scholar 

  31. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  32. Sharaf, D.M., Premlata, A.R., Tripathi, M.K., Karri, B., Sahu, K.C.: Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids 29, 122104 (2017)

    Article  Google Scholar 

  33. Tripathi, M.K., Sahu, K.C., Karapetsas, G., Matar, O.K.: Bubble rise dynamics in a viscoplastic material. J. Non-Newton. Fluid Mech. 222, 217–226 (2015)

    Article  MathSciNet  Google Scholar 

  34. Lamb, H.: Hydrodynamics. Cambridge University Press, New York (1932)

    MATH  Google Scholar 

Download references

Acknowledgements

KS thanks Science and Engineering Research Board (SERB), India, for providing financial support through the Grant Number, MTR/2017/000029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Chandra Sahu.

Additional information

Communicated by S. Balachandar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balla, M., Tripathi, M.K. & Sahu, K.C. A numerical study of a hollow water droplet falling in air. Theor. Comput. Fluid Dyn. 34, 133–144 (2020). https://doi.org/10.1007/s00162-020-00517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00517-z

Keywords

Navigation