Skip to main content
Log in

Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid–gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bixlera G.D., Bhushan B.: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale 6, 76–96 (2014)

    Article  Google Scholar 

  2. Ou J., Perot B., Rothestein J.P.: Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16(12), 4635 (2004)

    Article  MATH  Google Scholar 

  3. Bergeron V., Bonn B., Martin J.V., Vovelle L.: Controlling droplet deposition with polymer additives. Nature 405, 772–775 (2000)

    Article  Google Scholar 

  4. Patil N.D., Bhardwaj R.: Evaporation of a sessile microdroplet on a heated hydrophobic substrate. Int. J. Micronano Scale Transp. 5(2), 51–58 (2014)

    Article  Google Scholar 

  5. Betz A.R., Xu J., Qiu H., Attinger D.: Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling. Appl. Phys. Lett. 97, 141909 (2010)

    Article  Google Scholar 

  6. Attinger D., Frankiewicz C., Betz A.R., Schutzius T.M., Ganguly R., Schutzius T.M., Das A., Kim C.J., Megaridis C.M.: Surface engineering for phase change heat transfer: a review. MRS Energy Sustain. 1, 1–40 (2014)

    Google Scholar 

  7. Bhardwaj R., Longtin J.P., Attinger D.: Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface. Int. J. Heat Mass Transf. 53, 3733–3744 (2010)

    Article  Google Scholar 

  8. Yarin A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing. Ann. Rev. Fluid Mech. 38, 159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schiaffino S., Sonin A.A.: Molten droplet deposition and solidification at low Weber numbers. Phys. Fluids 9, 3172–3187 (1997)

    Article  Google Scholar 

  10. Rider W.J., Kothe D.B.: Reconstructing volume tracking. J. Comput. Phys. 141, 112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Osher S., Sethian J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pasandideh-Fard M., Qiao Y.M., Chandra S., Mostaghimi J.: A three-dimensional model of droplet impact and solidification. Int. J. Heat Mass Transf. 45, 2229–2242 (2002)

    Article  MATH  Google Scholar 

  13. Liu H., Krishnan S., Marella S., Udaykumar H.S.: Sharp interface Cartesian grid method II: a technique for simulating droplet interactions with surfaces of arbitrary shape. J. Comput. Phys. 210, 32–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caviezel D., Narayanan C., Lakehal D.: Adherence and bouncing of liquid droplets impacting on dry surfaces. Microfluid. Nanofluid. 5, 469–478 (2008)

    Article  Google Scholar 

  15. Randive P., Dalal A., Mukherjee P.P.: Probing the influence of superhydrophobicity and mixed wettability on droplet displacement behavior. Microfluid. Nanofluid. 17, 657–674 (2014)

    Article  Google Scholar 

  16. Fukai J., Zhao Z., Poulikakos D., Megaridis C.M., Miyatake O.: Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys. Fluids A 5, 2588–2599 (1993)

    Article  MATH  Google Scholar 

  17. Zhao Z., Poulikakos D., Fukai J.: Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—I. Modeling. Int. J. Heat Mass Transf. 39, 2771–2789 (1996)

    Article  MATH  Google Scholar 

  18. Waldvogel J.M., Poulikakos D.: Solidification phenomena in picoliter size solder droplet deposition on a composite substrate. Int. J. Heat Mass Transf. 40, 295–309 (1997)

    Article  MATH  Google Scholar 

  19. Attinger D., Poulikakos D.: Melting and resolidification of a substrate caused by molten microdroplet impact. J. Heat Transf. 123, 1110–1122 (2001)

    Article  Google Scholar 

  20. Dietzel M., Poulikakos D.: Laser induced motion in nanoparticle suspension droplets on a surface. Phys. Fluids 17, 102–106 (2005)

    Article  MATH  Google Scholar 

  21. Dietzel M., Bieri N.R., Poulikakos D.: Dropwise deposition and wetting of nanoparticle suspensions. Int. J. Heat Fluid Flow 29, 250–262 (2008)

    Article  Google Scholar 

  22. Bhardwaj R., Longtin J.P., Attinger D.: A numerical investigation on the effect of liquid properties and interfacial heat transfer during microdroplet deposition onto a glass substrate. Int. J. Heat Mass Transf. 50, 2912–2923 (2007)

    Article  MATH  Google Scholar 

  23. Bhardwaj R., Attinger D.: Non-isothermal wetting during impact of millimeter-size water drop on a flat substrate: Numerical investigation and comparison with high-speed visualization experiments. Int. J. Heat Fluid 29, 1422–1435 (2008)

    Article  Google Scholar 

  24. Bhardwaj R., Fang X., Attinger D.: Pattern forming during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. N. J. Phys. 11, 075020 (2009)

    Article  Google Scholar 

  25. Bhardwaj R., Fang X., Somasundaran P., Attinger D.: Self-assembly of colloidal particles from evaporating droplets: role of the pH and proposition of a phase diagram. Langmuir 26(11), 7833–7842 (2010)

    Article  Google Scholar 

  26. Sprittles J.E., Shikhmurzaev Y.D.: The dynamics of liquid drops and their interaction with solids of varying wettabilities. Phys. Fluids 24, 082001 (2012)

    Article  MATH  Google Scholar 

  27. Blake T.D., De Coninck J.: The effect of solid–liquid interactions on dynamic wetting. Adv. Colloid Interface Sci. 66, 21 (2002)

    Article  Google Scholar 

  28. Richard D., Quéré D.: Bouncing water drops. Europhys. Lett. 50(6), 769–775 (2000)

    Article  Google Scholar 

  29. Clanet C., Béguin C., Richard D., Quéré D.: Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199–208 (2004)

    Article  MATH  Google Scholar 

  30. Bartolo D., Bouamrirene F., Verneuil É., Buguin A., Silberzan P., Moulinet S.: Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74(2), 299–305 (2006)

    Article  Google Scholar 

  31. Jung Y.C., Bhushan B.: Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Langmuir 25(16), 9208–9218 (2009)

    Article  Google Scholar 

  32. Tsai P., Pacheco S., Pirat C., Lefferts L., Lohse D.: Drop impact upon micro- and Nano-structured superhydrophobic surfaces. Langmuir 25(20), 12293–12298 (2009)

    Article  Google Scholar 

  33. Chen L., Xiao Z., Chan P.C.H., Lee Y.K., Li Z.: A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl. Surf. Sci. 257, 8857–8863 (2011)

    Article  Google Scholar 

  34. Wenzel T.N.: Surface roughness and contact angle. J. Phys. Colloid Chem. 53, 1466 (1949)

    Article  Google Scholar 

  35. Cassie A.B.D.: Contact angles. Discuss. Faraday Soc. 3, 11 (1948)

    Article  Google Scholar 

  36. Patankar N.A.: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249–1253 (2003)

    Article  Google Scholar 

  37. Wang Z., Lopez C., Hirsa A., Koratkar N.: Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. Appl. Phys. Lett. 91, 023105 (2007)

    Article  Google Scholar 

  38. Jung Y.C., Bhushan B.: Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr. Mater. 57, 1057–1060 (2007)

    Article  Google Scholar 

  39. Lafuma A., Quéré D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    Article  Google Scholar 

  40. Sikarwar B.S., Khandekar S., Muralidhar K.: Simulation of flow and heat transfer in a liquid drop sliding underneath a hydrophobic surface. Int. J. Heat Mass Transf. 57(2), 786–811 (2013)

    Article  Google Scholar 

  41. Sakai M., Hashimoto A., Yoshida N., Suzuki S., Kameshima Y., Nakajima A.: Image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev. Sci. Instrum. 78, 045103 (2007)

    Article  Google Scholar 

  42. Hirt C.W., Nichols B.D.: Adding limited compressibility to incompressible hydrocodes. J. Comput. Phys. 34, 390–400 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Leal, L.G.: Advanced Transport Phenomena, p. 322. Cambridge University Press, Cambridge (2007)

  44. Duchemin L., Josserand C.: Rarefied gas correction for the bubble entrapment singularity in drop impacts. C. R. Mec. 340, 792–803 (2012)

    Article  Google Scholar 

  45. Josserand C., Zaleski S.: Droplet splashing on a thin liquid film. Phys. Fluids 15, 1650–1657 (2003)

    Article  MATH  Google Scholar 

  46. Thoroddsen S.T., Etoh T.G., Takehara K., Ootsuka N., Hatsuki Y.: The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203–212 (2005)

    Article  MATH  Google Scholar 

  47. Kolinski J.M., Mahadevan L., Rubinstein S.M.: Drops can bounce from perfectly hydrophilic surfaces. Europhys. Lett. 108, 24001 (2014)

    Article  Google Scholar 

  48. de Ruiter J., Lagraauw R., Van den Ende D., Mugele F.: Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11, 48–53 (2015)

    Article  Google Scholar 

  49. Huh C., Scriven L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85 (1971)

    Article  Google Scholar 

  50. Dussan V.E.B.: The moving contact line: the slip boundary condition. Ann. Rev. Fluid Mech. 77, 665–684 (1976)

    Article  MATH  Google Scholar 

  51. Dussan V.E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371–400 (1979)

    Article  Google Scholar 

  52. Shikhmurzaev Y.D.: Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211–249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Haferl S., Zhao Z., Giannakouros J., Attinger D., Poulikakos D.: Transport phenomena in the impact of a molten droplet on a surface: macroscopic phenomenology and microscopic considerations. Part I: fluid dynamics. In: Tien, C.L. (eds) Annual Review of Heat Transfer XI, pp. 145–205. Begell House, New York (2000)

    Google Scholar 

  54. Ren W., W E.: Boundary conditions for the moving contact line problem. Phys. Fluids 19, 022101 (2007)

    Article  MATH  Google Scholar 

  55. Sui Y., Hang D., Spelt P.D.M.: Numerical simulation of flows with moving contact lines. Ann. Rev. Fluid Mech. 46, 97–119 (2014)

    Article  MATH  Google Scholar 

  56. Sprittles J.E., Shikhmurzaev Y.D.: Finite element framework for describing dynamic wetting phenomena. Int. J. Numer. Methods Fluids 68, 1257–1298 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Eggers J., Stone H.A.: Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech. 505, 309–321 (2004)

    Article  MATH  Google Scholar 

  58. Qian T., Wang X.P., Sheng P.: Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1(1), 1–52 (2006)

    MATH  Google Scholar 

  59. Bach P., Hassager O.: An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics and applications to free-surface flow. J. Fluid Mech. 152, 173–190 (1985)

  60. Bayer I.S., Megaridis C.M.: Contact line dynamics in droplets impacting on flat surfaces with different wetting characteristics. J. Fluid Mech. 558, 415–449 (2006)

    Article  MATH  Google Scholar 

  61. Lide D.R.: CRC Handbook of Chemistry and Physics on CD-ROM, 81st edn. Chapman and Hall, London (2001)

    Google Scholar 

  62. Supplementary video data (Filename = Case1_Bouncing_We2pt34.avi)

  63. Supplementary video data (Filename = Case2_NonBouncing_Wept45.avi).

  64. Mao T., Kuhn D.C.S., Tran H.: Spread and rebound of liquid droplets upon impact on flat surfaces. Am. Inst. Chem. Eng. J. 43(9), 2169–2179 (1997)

    Article  Google Scholar 

  65. Attane P., Girard F., Morin V.: An energy balance approach of the dynamics of drop impact on a solid surface. Phys. Fluids 19, 012101 (2007)

    Article  MATH  Google Scholar 

  66. Richard D., Clanet C., Quéré D.: Contact time of a bouncing drop. Nature 417, 811 (2002)

    Article  Google Scholar 

  67. Supplementary video data (Filename = Case4_Bouncing_theta158.avi)

  68. Supplementary video data (Filename = Case5_NonBouncing_theta91.avi).

  69. Reyssat M., Pépin A., Marty F., Chen Y., Quéré D.: Bouncing transitions on microtextured materials. Europhys. Lett. 74(2), 306–312 (2006)

    Article  Google Scholar 

  70. Hyväluoma J., Timonen J.: Impact states and energy dissipation in bouncing and non-bouncing droplets. J. Stat. Mech. Theory Exp. 6, P06010 (2009)

    Google Scholar 

  71. Joshi A.S., Sun Y.: Numerical simulation of colloidal drop deposition dynamics on patterned substrates for printable electronics fabrication. J. Disp. Technol. 6(11), 579–585 (2010)

    Article  Google Scholar 

  72. Vandre E., Carvalho M.S., Kumar S.: Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496–520 (2012)

    Article  MATH  Google Scholar 

  73. de Gennes P.G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Bhardwaj.

Additional information

Communicated by S. Balachandar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 12,661 kb)

(AVI 5,497 kb)

(AVI 5,997 kb)

(AVI 8,528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bange, P.G., Bhardwaj, R. Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces. Theor. Comput. Fluid Dyn. 30, 211–235 (2016). https://doi.org/10.1007/s00162-015-0376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0376-3

Keywords

Navigation