Skip to main content
Log in

Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the effects of a magnetic field on natural convection flow in filled long enclosures with Cu/water nanofluid have been analyzed by lattice Boltzmann method. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103–105, the volumetric fraction of nanoparticles between 0 and 6 %, the aspect ratio of the enclosure between A = 0.5 and 2. The Hartmann number has been varied from Ha = 0 to 90 with interval 30 while the magnetic field is considered at inclination angles of θ = 0°, 30°, 60° and 90°. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and the aspect ratios. Heat transfer decreases with the growth of the aspect ratio but this growth causes the effect of the nanoparticles to increase. The magnetic field augments the effect of the nanoparticles at high Rayleigh numbers (Ra = 105). The effect of the nanoparticles rises for high Hartmann numbers when the aspect ratio increases. The rise in the magnetic field inclination improves heat transfer at aspect ratio of A = 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

B :

Magnetic field

c :

Lattice speed

c i :

Discrete particle speeds

c p :

Specific heat at constant pressure

F :

External forces

f :

Density distribution functions

f eq :

Equilibrium density distribution functions

g :

Internal energy distribution functions

g eq :

Equilibrium internal energy distribution functions

g y :

Gravity

Gr:

Grashof number \({\left({{Gr}}=\frac{\beta g_y H^{3}(T_H-T_C)}{\nu ^{2}}\right)}\)

Ha:

Hartmann number \({{{Ha}}^{2}=\frac{B^{2}L^{2}\sigma _e}{\mu}}\)

M :

Lattice number

Ma:

Mach number

Nu:

Nusselt number

Pr:

Prandtl number

R :

Constant of the gases

Ra:

Rayleigh number \({\left({{{Ra}}=\frac{\beta g_yH^{3}(T_H -T_C )}{\nu \alpha}}\right)}\)

T :

Temperature

x,y :

Cartesian coordinates

u :

Magnitude velocity

σ :

Electrical conductivity

ω i :

Weighted factor indirection i

β :

Thermal expansion coefficient

τ c :

Relaxation time for temperature

τ v :

Relaxation time for flow

ν :

Kinematic viscosity

Δx :

Lattice spacing

Δt :

Time increment

α :

Thermal diffusivity

φ :

Volume fraction

μ :

Dynamic viscosity

ψ :

Stream function value

θy:

Inclination angle

avg:

Average

C :

Cold

H :

Hot

f :

Fluid

nf:

Nanofluid

s :

Solid

References

  1. De Davis V.: Natural convection of air in a square cavity; a benchmark numerical solution. Int. J. Numer. Fluids. 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  2. Ostrach S.: Natural convection in enclosures. J. Heat Transfer. 110, 1175–1190 (1988)

    Article  Google Scholar 

  3. Catton, I.: Natural convection in enclosures. In: Proceedings of the Sixth International Heat Transfer Conference, vol. 6 (1978)

  4. Bejan A.: Convective Heat Transfer, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  5. Patrick H.O., David N.: Introduction to Convective Heat Transfer Analysis. McGraw Hill, New York (1999)

    Google Scholar 

  6. Kahveci K., Oztuna S.: MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur. J. Mech. B Fluids. 28, 744–752 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pirmohammadi M., Ghassemi M.: Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int. Commun. Heat Mass Transf. 36, 776–780 (2009)

    Article  Google Scholar 

  8. Sathiyamoorthy M., Chamkha A.: Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49, 1856–1865 (2010)

    Article  Google Scholar 

  9. Sivasankaran S., Malleswaran A., Lee J., Sundar P.: Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls. Int. J. Heat Mass Transf. 54, 512–525 (2011)

    Article  MATH  Google Scholar 

  10. Rahman M.M., Parvin S., Saidur R., Rahim N.A.: Magnetohydrodynamic mixed convection in a horizontal channel with an open cavity. Int. Commun. Heat Mass Transf. 38, 184–193 (2011)

    Article  Google Scholar 

  11. Oztop H.F., Rahman M.M., Ahsan A., Hasanuzzaman M., Saidur R., Al-Salem K., Rahim N.A.: MHD natural convection in an enclosure from two semi-circular heaters on the bottom wall. Int. J. Heat Mass Transf. 55, 1844–1854 (2012)

    Article  Google Scholar 

  12. Oztop H.F., Al-Salem K., Pop I.: MHD mixed convection in a lid-driven cavity with corner heater. Int. J. Heat Mass Transf. 54, 3495–3504 (2011)

    Google Scholar 

  13. Nasrin R., Parvin S.: Hydromagnetic effect on mixed convection in a lid-driven cavity with sinusoidal corrugated bottom surface. Int. Commun. Heat Mass Transf. 38, 781–789 (2011)

    Article  Google Scholar 

  14. Khanafer K., Vafai K., Lightstone M.: Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int. Commun. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  15. Wen D., Ding Y.: Formulation of nanofluids for natural convective heat transfer applications. Int. J. Heat Fluid Flow 26, 855–864 (2005)

    Article  Google Scholar 

  16. Ho C.J., Chen M.W., Li Z.W.: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 51, 4506–4516 (2008)

    Article  MATH  Google Scholar 

  17. Abu-Nada E., Oztop H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow 30, 669–678 (2009)

    Article  Google Scholar 

  18. Kefayati G.H.R., Hosseinizadeh S.F., Gorji M., Sajjadi H.: Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int. Commun. Heat Mass Transf. 38, 798–805 (2011)

    Article  Google Scholar 

  19. Kefayati G.H.R., Gorji M., Sajjadi H., Ganji D.D.: Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall. Sci. Iran. 19, 1053–1065 (2012)

    Article  Google Scholar 

  20. Kefayati G.H.R., Hosseinizadeh S.F., Gorji M., Sajjadi H.: Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to Water/copper nanofluid. Int. J. Therm. Sci. 52, 91–101 (2011)

    Article  Google Scholar 

  21. Kefayati, G.H.R. : Effect of a magnetic field on natural convection in an open cavity subjugated to Water/Alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat Mass Transf. (in press)

  22. Lai F., Yang Y.: Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int. J. Therm. Sci. 50, 1930–1941 (2011)

    Article  Google Scholar 

  23. Zou Q.S., He X.Y.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GH. R. Kefayati.

Additional information

Communicated by O. Zikanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kefayati, G.R. Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor. Comput. Fluid Dyn. 27, 865–883 (2013). https://doi.org/10.1007/s00162-012-0290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0290-x

Keywords

Navigation