Skip to main content
Log in

Proper orthogonal decomposition of the flow in geometries containing a narrow gap

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Geometries containing a narrow gap are characterized by strong quasi-periodical flow oscillations in the narrow gap region. The above mentioned phenomena are of inherently unstable nature and, even if no conclusive theoretical study on the subject has been published, the evidence shown to this point suggests that the oscillations are connected to interactions between eddy structures of turbulent flows on opposite sides of the gap. These coherent structures travel in the direction of homogeneous turbulence, in a fashion that strongly recalls a vortex street. Analogous behaviours have been observed for arrays of arbitrarily shaped channels, within certain range of the geometric parameters. A modelling for these phenomena is at least problematic to achieve since they are turbulence driven. This work aims to address the use of Proper Orthogonal Decomposition (POD) to reduce the Navier–Stokes equations to a set of ordinary differential equations and better understand the dynamics underlying these oscillations. Both experimental and numerical data are used to carry out the POD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

y + :

Normalized wall distance

x i :

Cartesian coordinates (vector notation)

x, y, z :

Cartesian coordinates

u :

Velocity vector

u i :

Cartesian velocity components

u :

Cartesian velocity component in direction x

v :

Cartesian velocity component in direction y

w :

Cartesian velocity component in direction z

w bulk :

Bulk velocity

\({\langle f \rangle}\) :

Ensemble averaging operator on function f

f′:

Fluctuation over the ensemble average \({f=f-\langle f \rangle}\)

ρ :

Density

υ :

Kinematic viscosity

Δ:

Filter width, mesh size

u τ :

Friction velocity

λ:

Wavelength of the coherent structures

D h :

Hydraulic diameter

Re :

Bulk Reynolds number Re = D h w bulk/ν

g :

Inner to outer diameter

e :

Eccentricity e = d/D h

d :

Distance between the cylinder axis for the eccentric channel

f :

Frequency

T :

Period

k :

Wavenumber

m :

Quantum number

L :

Length of the domain in the streamwise direction

a i :

Coefficients of the POD modes

S ij :

Strain tensor

τ ij :

SGS stress tensor

M :

Number of snapshots

N eq :

Number of modes used in the ODE set

M eq :

Number of oscillatory modes contained in the ODE set

References

  1. Hooper J.D., Rehme K.: Large-scale structural effect in developed turbulent flows through closely-spaced rod arrays. J. Fluid Mech. 145, 305–337 (1984)

    Article  Google Scholar 

  2. Meyer L., Rehme K.: Large-scale turbulence phenomena in compound rectangular channels. Exp. Therm. Fluid Sci. 8, 286–304 (1994)

    Article  Google Scholar 

  3. Merzari E., Ninokata H., Baglietto E.: numerical simulation of the flow in tight-lattice fuel bundles. Nucl. Eng. Des. 238, 1703 (2008)

    Article  Google Scholar 

  4. Merzari E., Wang S., Ninokata H., Theofilis V.: Biglobal linear stability analysis for the flow in eccentric annular channels and a related geometry. Phys. Fluids 20, 114104 (2008). doi:10.1063/1.3005864

    Article  Google Scholar 

  5. Gosset A., Tavoularis S.: Laminar flow instability in a rectangular channel with a cylindrical core. Phys. Fluids 18, 044108 (2006)

    Article  Google Scholar 

  6. Guellouz M.S., Tavoularis S.: The structure of turbulent flow in a rectangular channel containing a cylindrical rod—Part I: Reynolds averaged experiments. Exp. Therm. Fluid Sci. 23, 59 (2000)

    Article  Google Scholar 

  7. Lexmond, A., Mudde, M., Van der Haagen M.: Visualization of the vortex street and characterization of the cross flow in the gap between two subchannels. In: Proceedings of 11th Nureth. Avignone, Paper 122 (2005)

  8. Aubry N., Holmes P., Lumley J.L., Stone E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sanghi S., Aubry N.: Low dimensional models for the structure and dynamics in near wall turbulence. J. Fluid Mech. 247, 455–488 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lumley J.L.: Stochastic Tools in Turbulence. Academic Press, New York (1970)

    MATH  Google Scholar 

  11. Berkooz G., Holmes P., Lumley J.L.: The proper orthogonal decomposition in the analisys of turbulent flow. Ann. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  12. Sirovich L.: Turbulence and the dynamics of coherent structures, Part I: Coherent structures. Q. Appl. Math. XLV, 561–571 (1987)

    MathSciNet  Google Scholar 

  13. Aubry N., Guyonnet R., Lima R.: Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64, 683–739 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Merzari E., Ninokata H.: Anisotropic turbulence and coherent structures in eccentric annular channels. Flow Turbul. Combust. 82, 93–120 (2009). doi:10.1007/s10494-008-9170-2

    Article  Google Scholar 

  15. Deardorff J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

    Article  MATH  Google Scholar 

  16. Aubry N.: On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2, 339–352 (1991)

    Article  MATH  Google Scholar 

  17. Aubry N., Guyonnet R., Lima R.: Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions. J. Nonlinear Sci. 2, 183–215 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zang Y., Street R.L., Koseff J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1 (1994)

    Article  MathSciNet  Google Scholar 

  19. Jordan S.A.: Dynamic subgrid-scale modeling for large-eddy simulations in complex topologies. J. Fluids Eng. 123(3), 619–627 (2001)

    Article  Google Scholar 

  20. Kasagi, N., Horiuti, K., Miyake, Y., Miyauchi, T., Nagano, Y.: Establishment of the direct numerical simulation data bases of turbulent transport phenomena. Available on the Website of Tokyo University. http://www.thtlab.t.u-tokyo.ac.jp/

  21. Nikitin N.V.: Direct numerical simulation of turbulent flows in eccentric pipes. Comput. Math. Math. Phys. 46, 509–526 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Omurtag A., Sirovich L.: On low-dimensional modeling of channel turbulence. Theor. Comput. Fluid Dyn. 13, 115–127 (1999)

    Article  MATH  Google Scholar 

  23. Merzari, E., Ninokata, H.: Toward a dynamical system approach for the understanding of turbulent flow pulsation between subchannels. In: Proceedings of the 12th Nureth. Pittsburgh, USA (2007)

  24. Cazemier, W.: Proper orthogonal decomposition and low dimensional models for turbulent flow. PhD thesis, University of Groningen, Groningen, The Netherlands (1997). ISBN 90-367-0682-3

  25. Shampine L.F., Reichelt M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Merzari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzari, E., Ninokata, H., Mahmood, A. et al. Proper orthogonal decomposition of the flow in geometries containing a narrow gap. Theor. Comput. Fluid Dyn. 23, 333–351 (2009). https://doi.org/10.1007/s00162-009-0152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0152-3

Keywords

Mathematics Subject Classification (2000)

Navigation