Skip to main content
Log in

Modeling and numerical investigation of damage behavior in pantographic layers using a hemivariational formulation adapted for a Hencky-type discrete model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this study, a hemivariational formulation is presented for a Hencky-type discrete model to predict damage behavior in pantographic layers. In the discrete model, elastic behavior of pantographic layers is modeled via extensional, bending and shear springs. A damage descriptor is added for each spring type. Such a damage descriptor is non-decreasing function of time, and therefore, the standard variational formulation of the problem is generalized to a hemivariational one providing not only the Euler–Lagrange equations for the evolution of the displacements of all the standard degrees of freedom but also the Karush–Khun–Tucker condition governing the evolution of damage descriptor. The dissipation energy included in the hemivariational formulation depends upon six additional constitutive parameters (two per each spring type), and the mechanical behavior of layer is simulated with an efficient and smart strategy able to solve the nonlinear equilibrium equations coupled with the evolution of damage variables. A metallic pantographic layer which was experimentally investigated in the literature is considered to test the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The hypothesis of pantographic layer with orthogonal beams can easily be removed as proven in [47].

References

  1. Yildizdag, M.E., Tran, C.A., Barchiesi, E., Spagnuolo, M., dell’Isola, F., Hild, F.: A multi-disciplinary approach for mechanical metamaterial synthesis: a hierarchical modular multiscale cellular structure paradigm. In: State of the Art and Future Trends in Material Modeling, pp. 485–505. Springer (2019)

  2. Vangelatos, Z., Komvopoulos, K., Grigoropoulos, C.: Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Math. Mech. Solids 24(2), 511–524 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Berezovski, A., Yildizdag, M.E., Scerrato, D.: On the wave dispersion in microstructured solids. Continuum Mech. Thermodyn. 32(3), 569–588 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  4. Kwon, J., Evans, K., Ma, L., Arnold, D., Yildizdag, M.E., Zohdi, T., Ritchie, R.O., Xu, T.: Scalable electrically conductive spray coating based on block copolymer nanocomposites. ACS Appl. Mater. Interfaces 12(7), 8687–8694 (2020)

    Google Scholar 

  5. Spagnuolo, M., Cazzani, A.M.: Contact interactions in complex fibrous metamaterials. Contin. Mech. Thermodyn. 1–17 (2021)

  6. Vangelatos, Z., Yildizdag, M.E., Giorgio, I., dell’Isola, F., Grigoropoulos, C.: Investigating the mechanical response of microscale pantographic structures fabricated by multiphoton lithography. Extr. Mech. Lett. 43, 101202 (2021)

    Google Scholar 

  7. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Eremeyev, V.A., Boutin, C., Steigmann, D., et al.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)

    MathSciNet  MATH  Google Scholar 

  9. dell’Isola, F., Turco, E., Misra, A., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M.: Force-displacement relationship in micro-metric pantographs: experiments and numerical simulations. Comptes Rendus Mécanique 347(5), 397–405 (2019)

    ADS  Google Scholar 

  10. Desmorat, B., Spagnuolo, M., Turco, E.: Stiffness optimization in nonlinear pantographic structures. Math. Mech. Solids 25(12), 2252–2262 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Yildizdag, M.E., Barchiesi, E., dell’Isola, F.: Three-point bending test of pantographic blocks: numerical and experimental investigation. Math. Mech. Solids 25(10), 1965–1978 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Auger, P., Lavigne, T., Smaniotto, B., Spagnuolo, M., dell’Isol F., Hild, F.: Poynting effects in pantographic metamaterial captured via multiscale DVC. The J. Strain Anal. Eng. Des. 56(7), 462–477 (2021)

  13. Eremeyev, V.A., Ganghoffer, J.-F., Konopińska-Zmysłowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103213 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Spagnuolo, M., Andreaus, U., Misra, A., Giorgio, I., Hild, F.: Mesoscale modeling and experimental analyses for pantographic cells: effect of hinge deformation. Mech. Mater. 160, 103924 (2021)

  15. dell’Isola, F., Seppecher, P., Alibert, J.-J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., et al.: Pantographic metamaterials: an example of mathematically-driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4), 851–884 (2019)

    MathSciNet  ADS  Google Scholar 

  16. dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., Eugster, S.R., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Contin. Mech. Thermodyn. 31(4), 1231–1282 (2019)

  17. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)

    MathSciNet  MATH  Google Scholar 

  18. dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Giorgio, I., Della Corte, A., dell’Isola, F., Steigmann, D.J.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)

    ADS  Google Scholar 

  20. Giorgio, I., Varano, V., dell’Isola, F., Rizzi, N.L.: Two layers pantographs: a 2d continuum model accounting for the beams? Offset and relative rotations as averages in so (3) lie groups. Int. J. Solids Struct. 216, 43–58 (2021)

    Google Scholar 

  21. Giorgio, I.: Lattice shells composed of two families of curved kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Contin. Mech. Thermodyn. 33(4), 1063–1082 (2021)

    MathSciNet  ADS  Google Scholar 

  22. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  23. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Math. und Phys. 69(3), 1–19, (2018)

  24. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Compl. Syst. 6(2), 77–100 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Abali, B.E., Klunker, A., Barchiesi, E., Placidi, L.: A novel phase-field approach to brittle damage mechanics of gradient metamaterials combining action formalism and history variable. ZAMM-J. Appl. Math Mech./Zeitschrift für Angewandte Math. Mech. 101(9), e202000289.

  26. Barchiesi, E., Yang, H., Tran, C., Placidi, L., Müller, W.H.: Computation of brittle fracture propagation in strain gradient materials by the fenics library. Math. Mech. Solids 26(3), 325–340 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Timofeev, D., Barchiesi, E., Misra, A., Placidi, L.: Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math. Mech. Solids 26(5), 738–770 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1–2), 119–137 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  29. Placidi, L., Barchiesi, E., Misra, A., Timofeev, D.: Micromechanics-based elasto-plastic-damage energy formulation for strain gradient solids with granular microstructure. Contin. Mech. Thermodyn. 33(5), 2213–2241 (2021)

  30. Steigmann, D.: Gradient plasticity in isotropic solids. Math. Mech. Solids. 27(10), 1896–1912 (2021)

  31. Abali, B.E., Barchiesi, E.: Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization. Contin. Mech. Thermodyn. 33(4), 993–1009 (2021)

    MathSciNet  ADS  Google Scholar 

  32. Barchiesi, E., Misra, A., Placidi, L., Turco, E.: Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Math. Mech. 101(11), e202100059. (2021)

  33. Spagnuolo, M., Yildizdag, M.E., Andreaus, U., Cazzani, A.M.: Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math. Mech. Solids 26(1), 18–29 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Yang, H., Timofeev, D., Abali, B.E., Li, B., Müller, W.H.: Verification of strain gradient elasticity computation by analytical solutions. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Math. Mech. 101(12), e202100023 (2021)

  35. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A ritz approach for the static analysis of planar pantographic structures modeled with nonlinear euler-bernoulli beams. Contin. Mech. Thermodyn. 30(5), 1103–1123 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Google Scholar 

  37. Spagnuolo, M., Peyre, P., Dupuy, C.: Phenomenological aspects of quasi-perfect pivots in metallic pantographic structures. Mech. Res. Commun. 101, 103415 (2019)

    Google Scholar 

  38. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 472(2185), 20150790 (2016)

    ADS  Google Scholar 

  39. Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Compl. Syst. 5(2), 127–162 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2207), 20170636 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  41. Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 1–17 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 1–28 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Turco, E.: Discrete is it enough? the revival of Piola-Hencky keynotes to analyze three-dimensional Elastica. Contin. Mech. Thermodyn. 30(5), 1039–1057 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  44. Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)

    Google Scholar 

  45. Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int. J. Non-Linear Mech. 123, 103481 (2020)

    ADS  Google Scholar 

  46. Turco, E.: A numerical survey of nonlinear dynamical responses of discrete pantographic beams. Contin. Mech. Thermodyn. 33(4), 1465–1485 (2021)

  47. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 118, 1–14 (2017)

    Google Scholar 

  48. Hencky, H.: Über die angenäherte lösung von stabilitätsproblemen im raum mittels der elastischen gelenkkette. PhD thesis, Verlag nicht ermittelbar (1921)

  49. Challamel, N., Kocsis, A., Wang, C.: Discrete and non-local elastica. Int. J. Non-Linear Mech. 77, 128–140 (2015)

    ADS  Google Scholar 

  50. Wang, C.M., Zhang, H., Gao, R., Duan, W., Challamel, N.: Hencky bar-chain model for buckling and vibration of beams with elastic end restraints. Int. J. Struct. Stab. Dyn. 15(07), 1540007 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15(7), 529–551 (1979)

    MathSciNet  MATH  Google Scholar 

  52. Turco, E., Caracciolo, P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190(5–7), 691–706 (2000)

    MATH  ADS  Google Scholar 

  53. Barchiesi, E., dell’Isola, F., Bersani, A.M., Turco, E.: Equilibria determination of elastic articulated duoskelion beams in 2D via a Riks-type algorithm. Int. J. Non-Linear Mech. 128, 103628 (2021)

    ADS  Google Scholar 

  54. Clarke, M.J., Hancock, G.J.: A study of incremental-iterative strategies for non-linear analyses. Int. J. Numer. Meth. Eng. 29(7), 1365–1391 (1990)

    Google Scholar 

  55. Spagnuolo, M., Yildizdag, M.E., Pinelli, X., Cazzani, A., Hild, F.: Out-of-plane deformation reduction via inelastic hinges in fibrous metamaterials and simplified damage approach. Math. Mech. Solids. 27(6), 1011–1031 (2022)

  56. Sessa, S., Barchiesi, E., Placidi, L., Paradiso, M., Turco, E., Hamila, N.: An insight into computational challenges in damage mechanics: analysis of a softening Hooke’s spring. In: Giorgio, I., Placidi, L., Barchiesi, E., Abali, B.E., Altenbach, H. (eds.) Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, pp. 537–564, Springer (2022)

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erden Yildizdag.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erden Yildizdag, M., Placidi, L. & Turco, E. Modeling and numerical investigation of damage behavior in pantographic layers using a hemivariational formulation adapted for a Hencky-type discrete model. Continuum Mech. Thermodyn. 35, 1481–1494 (2023). https://doi.org/10.1007/s00161-022-01154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01154-z

Keywords

Navigation