Skip to main content
Log in

Relation between defects and crystalline thermal conduction

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Modeling of the heat transfer in ideal crystal lattice with defects is performed for measuring the heat conductivity coefficient. A non-steady process in closed system is studied. The method is based on comparison of the results of molecular dynamics simulation and solution of the heat equation. Two-dimensional and three-dimensional structures with dense packing of particles are considered. Defects are modeled by removing or changing the mass of randomly selected lattice atoms. Based on the results of molecular-dynamics modeling, an empirical dependence of the thermal diffusivity on the density of defects is elaborated. It also turns out in a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lepri, S. (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921. Springer, Switzerland (2016)

    Google Scholar 

  2. Hoover, W.G., Hoover, C.G.: Simulation and Control of Chaotic Nonequilibrium Systems. Advanced Series in Nonlinear Dynamics, vol. 27. World Scientific, Singapore (2015)

    Book  Google Scholar 

  3. Callaway, J.: Model for lattice thermal conductivity at low temperature. Phys. Rev. 113(4), 1046–1051 (1959)

    Article  ADS  Google Scholar 

  4. Ma, J., Luo, X.: Examining the Gallaway model for lattice thermal conductivity. Phys. Rev. B 90, 035203 (2014)

    Article  ADS  Google Scholar 

  5. Klemens, P.G.: The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. A 68, 1113–1128 (1955)

    Article  ADS  Google Scholar 

  6. Polanco, C.A., Lindsay, L.: Thermal conductivity of \(InN\) with point defects from first principles. Phys. Rev. B 98, 014306 (2018)

    Article  ADS  Google Scholar 

  7. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 10731078 (1967)

    Article  Google Scholar 

  8. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., et al. (eds.) Mathematical Physics 2000, pp. 128–150. Imperial College Press, London (2000)

    Chapter  Google Scholar 

  9. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dhar, A., Dandekar, R.: Heat transport and current fluctuations in harmonic crystals. Phys. A 418, 49–64 (2015)

    Article  MathSciNet  Google Scholar 

  11. Le-Zakharov, A.A., Krivtsov, A.M.: Molecular dynamics investigation of heat conduction in crystals with defects. Dokl. Phys. 53(5), 261–264 (2008)

    Article  ADS  Google Scholar 

  12. Gendelman, O.V., Savin, A.V.: Normal heat conductivity in chains capable of dissociation. Europhys. Lett. 106, 34004 (2014)

    Article  ADS  Google Scholar 

  13. Guzev, M.A.: The Fourier law for a one-dimensional crystal. Far East. Math. J. 1, 34–39 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Krivtsov, A.M.: The ballistic heat equation for a one-dimensional harmonic crystal. In: Altenbach, H., et al. (eds.) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol. 103, pp. 345–358. Springer, Switzerland (2019)

    Google Scholar 

  15. Krivtsov, A.M.: On unsteady heat conduction in a harmonic crystal. arXiv:1509.02506 (2015)

  16. Gavrilov, S.N., Krivtsov, A.M., Tsvetkov, D.V.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Contin. Mech. Thermodyn. 31, 255–272 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kuzkin, V.A.: Fast and slow thermal processes in harmonic crystals with polyatomic lattice, arXiv [Preprint] (2018). arXiv:1808.00504

  18. Babenkov, M.B., Ivanova, E.A.: Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type. Contin. Mech. Thermodyn. 26, 483–502 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Adamyan, V., Zavalniuk, V.: Lattice thermal conductivity of graphene with conventionally isotopic defects. J. Phys. Condens. Matter 24(41), 415401 (2012)

    Article  Google Scholar 

  20. Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Article  Google Scholar 

  21. Liu, D., Yang, P., Yuan, X., Guo, J., Liao, N.: The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics. Phys. Lett. A 379(9), 810–814 (2015)

    Article  Google Scholar 

  22. Li, M., et al.: Effect of defects on the mechanical and thermal properties of graphene. Nanomaterials 9, 347 (2019)

    Article  Google Scholar 

  23. Yang, Y., et al.: Thermal conductivity of defective graphene oxide: a molecular dynamic study. Molecules 24, 1103 (2019)

    Article  Google Scholar 

  24. Kang, Y., et al.: Thermal transport of graphene sheets with fractal defects. Molecules 23, 3294 (2018)

    Article  Google Scholar 

  25. Ding, Z., Pei, Q.-X., Jiang, J.-W., Zhang, Y.-W.: Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C 119(28), 16358–16365 (2015)

    Article  Google Scholar 

  26. Park, J., et al.: Sensitivity of thermal transport in thorium dioxide to defects. J. Nucl. Mater. 504, 198–205 (2018)

    Article  ADS  Google Scholar 

  27. Resnick, A., et al.: Thermal transport study in actinide oxides with point defects. Nucl. Eng. Technol. (2019). https://doi.org/10.1016/j.net.2019.03.011

    Article  Google Scholar 

  28. Banholzer, W.F., Anthony, T.R.: Diamond properties as a function of isotopic composition. Thin Solid Films 212(1–2), 1–10 (1992)

    Article  ADS  Google Scholar 

  29. Anthony, T.R., Banholzer, W.F.: Properties of diamond with varying isotopic composition. Diam. Relat. Mater. 1, 71–726 (1992)

    Article  Google Scholar 

  30. Wei, Lanhua, et al.: Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 3764–3767 (1993)

    Article  ADS  Google Scholar 

  31. Qiu, Y.Z., et al.: Thermal conductivity of natural and synthetic diamonds with differing isotope contents. Thermochim. Acta 218, 257–268 (1993)

    Article  Google Scholar 

  32. Hoover, W.G., Hoover, C.G.: Hamiltonian thermostats fail to promote heat flow. Commun. Nonlinear Sci. Numer. Simul. 18, 3365–3372 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Krivtsov, A.M., Myasnikov, V.P.: Modelling using particles of the transformation of the inner structure and stress state in material subjected to strong thermal action. Mech. Solids 1, 72–85 (2005)

    Google Scholar 

  34. Krivtsov, A.M.: Molecular dynamics simulation of plastic effects upon spalling. Phys. Solid State 46(6), 1055–1060 (2004)

    Article  ADS  Google Scholar 

  35. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  36. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008)

    Article  ADS  Google Scholar 

  37. Xu, X., et al.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014)

    Article  ADS  Google Scholar 

  38. Goldstein, R.V., Morozov, N.F.: Mechanics of deformation and fracture of nanomaterials and nanotechnology. Phys. Mesomech. 10, 235–246 (2007)

    Article  Google Scholar 

  39. Shtukin, L.V., Berinskii, I.E., Indeitsev, D.A., Morozov, N.F., Skubov, D.Y.: Electromechanical models of nanoresonators. Phys. Mesomech. 19(3), 248254 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed in IPME RAS, supported by the Russian Science Foundation (Grant 19-41-04106). The authors thank a lot the referees for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Porubov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le-Zakharov, A.A., Krivtsov, A.M. & Porubov, A.V. Relation between defects and crystalline thermal conduction. Continuum Mech. Thermodyn. 31, 1873–1881 (2019). https://doi.org/10.1007/s00161-019-00807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00807-w

Keywords

Navigation