Skip to main content
Log in

Effects of prescribed heat flux and transpiration on MHD axisymmetric flow impinging on stretching cylinder

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2016

Abstract

A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kang, D.H., Lorente, S., Bejan, A.: Constructal architecture for heating a stream by convection. Int. J. Heat Mass Transf. 53, 2248–2255 (2010)

    Article  MATH  Google Scholar 

  2. Kang, D.H., Lorente, S., Bejan, A.: Constructal configuration for the radiation heating of a solid stream. J. Appl. Phys. 107(11), 114910–114917 (2010)

    Article  ADS  Google Scholar 

  3. Chiam, T.C.: Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet. Acta Mech. 122, 169–179 (1997)

    Article  MATH  Google Scholar 

  4. Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)

    Article  Google Scholar 

  5. Ali, M.E.: On thermal boundary layer on a power law stretched surface with suction or injection. Int. J. Heat Mass Flow 16, 280–290 (1995)

    Article  Google Scholar 

  6. Grubka, L.G., Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Transf. 107, 248–250 (1985)

    Article  Google Scholar 

  7. Makinde, O.D., Sibanda, P.: Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation. Int. J. Numer. Methods Heat Fluid Flow 21, 779–792 (2011)

    Article  Google Scholar 

  8. Magyari, K., Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D Appl. Phys. 32, 577–585 (1999)

    Article  ADS  Google Scholar 

  9. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  10. Butt, A.S., Ali, A.: Computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet. Eur. Phys. J. Plus 129, 13 (2014)

    Article  Google Scholar 

  11. Fang, T., Zhang, J., Yao, S.: Slip MHD viscous flow over a stretching sheet-an exact solution. Commun. Nonlinear Sci. Numer. Simul. 14, 3731–3737 (2009)

    Article  ADS  Google Scholar 

  12. Elbashbeshy, E.M.A.: Heat transfer over a stretching surface with variable surface heat flux. J. Phys. D. Appl. Phys. 31, 1951–1954 (1998)

    Article  ADS  Google Scholar 

  13. Bachok, N., Ishak, A.: Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays. J. Math. Sci. 4, 159–169 (2010)

    MATH  Google Scholar 

  14. Ishak, A., Nazar, R., Arifin, N.M., Ali, F.M., Pop, I.: MHD stagnation-point flow towards a stretching sheet with prescribed surface heat flux. Sains Malays. 40, 1193–1199 (2011)

    Google Scholar 

  15. Liu, I.C.: A note on heat and mass transfer for a hydromagnetics flow over a stretching sheet. Int. Commun. Heat Mass Transf. 32, 1075–1084 (2005)

    Article  Google Scholar 

  16. Pal, O., Mondal, H.: Influence of temperature-dependent viscosity and thermal radiation on MHD forced convection over a non-isothermal wedge. Appl. Math. Comput. 212, 194–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, H.T., Shih, Y.P.: Laminar boundary layer heat transfer along static and moving cylinders. J. Chin. Inst. Eng. 3, 73–79 (1980)

    Article  ADS  Google Scholar 

  18. Lin, H.T., Shih, Y.P.: Buoyancy effects on the laminar boundary layer heat transfer along vertically moving cylinders. J. Chin. Inst. Eng. 4, 47–51 (1981)

    Article  Google Scholar 

  19. Ali, M.E.: Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf. 29, 227–234 (1994)

    Google Scholar 

  20. Ishak, A., Nazar, A.: Laminar boundary layer flow along a stretching cylinder. Eur. J. Sci. Res. 36, 22–29 (2009)

    Google Scholar 

  21. Mukhopadhyay, S.: Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder. Front. Chem. Sci. Eng. 5, 385–391 (2011)

    Article  Google Scholar 

  22. Wang, C.Y.: Fluid flow due to a stretching cylinder. Phys. Fluids 31, 466–468 (1988)

    Article  ADS  Google Scholar 

  23. Ishak, A., Nazar, R., Pop, I.: Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Appl. Math. Mod. 32, 2059–2066 (2008)

    Article  MATH  Google Scholar 

  24. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H., Naeejee, S.: MHD flow and heat transfer of a dusty fluid over a stretching hollow cylinder with a convective boundary condition. Heat Transf. Asian Res. 43, 221–232 (2014)

    Article  Google Scholar 

  25. Ishak, A., Nazar, R., Pop, I.: Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Convers. Manag. 49, 3265–3269 (2008)

    Article  MATH  Google Scholar 

  26. Mukhopadhyay, S.: MHD boundary layer slip flow along a stretching cylinder. Ain Shams Eng. J. 4, 317–324 (2013)

    Article  Google Scholar 

  27. Joneidi, A.A., Domairry, G., Babaelahi, M., Mozaffari, M.: Analytical treatment on MHD flow and heat transfer due to a stretching hollow cylinder. Int. J. Numer. Methods Fluids 63, 548–563 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Lorenzini.

Additional information

Communicated by Andreas Öchsner.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00161-016-0527-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabood, F., Lorenzini, G., Pochai, N. et al. Effects of prescribed heat flux and transpiration on MHD axisymmetric flow impinging on stretching cylinder. Continuum Mech. Thermodyn. 28, 1925–1932 (2016). https://doi.org/10.1007/s00161-016-0519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0519-9

Keywords

Navigation