Skip to main content
Log in

Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A set of linearized 26 moment equations, along with their wall boundary conditions, are derived and used to study low-speed gas flows dominated by Knudsen layers. Analytical solutions are obtained for Kramers’ defect velocity and the velocity-slip coefficient. These results are compared to the numerical solution of the BGK kinetic equation. From the analysis, a new effective viscosity model for the Navier–Stokes equations is proposed. In addition, an analytical expression for the velocity field in planar pressure-driven Poiseuille flow is derived. The mass flow rate obtained from integrating the velocity profile shows good agreement with the results from the numerical solution of the linearized Boltzmann equation. These results are good for Knudsen numbers up to 3 and for a wide range of accommodation coefficients. The Knudsen minimum phenomenon is also well captured by the present linearized 26-moment equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cercignani C.: The Boltzmann Equation and its Applications. Springer-Verlag, New York (1988)

    MATH  Google Scholar 

  2. Bird G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Claredon Press, Oxford (1994)

    Google Scholar 

  3. Chapman S., Cowling T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  4. Muller I., Ruggeri T.: Extended Thermodynamics. Springer-Verlag, New York (1993)

    Google Scholar 

  5. Struchtrup H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

  6. Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  7. Levermore C. D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Xu K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Shan X., Yuan X.-F., Chen H.: Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413–441 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Struchtrup H., Torrihon M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15, 2668–2680 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Gu X.J., Emerson D.R.: A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys. 225, 263–283 (2007)

    Article  MATH  ADS  Google Scholar 

  12. Torrilhon M., Struchtrup H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227, 1982–2011 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gu X.J., Barber R.W., Emerson D.R.: How far can 13 moments go in modelling microscale gas phenomena?. Nano. Microscale Thermophy. Eng. 11, 85–97 (2007)

    Article  Google Scholar 

  14. Struchtrup H., Torrihon M.: Higher order effects in rarefied channel flows. Phys. Rev. E 78, 046301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Taheri P., Torrilhon M., Struchtrup H.: Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017102 (2009)

    Article  ADS  Google Scholar 

  16. Struchtrup H.: Linear kinetic transfer: moment equations, boundary conditions, and Knudsen layer. Physica A 387, 1750–1766 (2008)

    Article  ADS  Google Scholar 

  17. Gu X.J., Emerson D.R.: A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177–216 (2009)

    Article  Google Scholar 

  18. Cercignani C.: Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Ohwada T., Sone Y., Aoki K.: Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 2042–2049 (1989)

    Article  MATH  ADS  Google Scholar 

  20. Cercignani C., Lampis M., Lorenzani S.: Variational approach to gas flows in microchannels. Phys. Fluids 16, 3426–3437 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. Mansour M.M., Baras F., Garcia A.L.: On the validity of hydrodynamics in plane Poiseuille flow. Physica A 240, 255–267 (1997)

    Article  ADS  Google Scholar 

  22. Albertoni S., Cercignani C., Gotusso L.: Numerical evaluation of the slip coefficient. Phys. Fluids 6, 993–996 (1963)

    Article  ADS  Google Scholar 

  23. Loyalka S.K.: Velocity profile in the Knudsen layer for the Kramer’s problem. Phys. Fluids 18, 1666–1669 (1975)

    Article  ADS  Google Scholar 

  24. Loyalka S.K., Petrellis N., Storvick T.S.: Some numerical results for BGK model: thermal creep and viscous slip problems with arbitrary accomodation at the surface. Phys. Fluids 18, 1094–1099 (1975)

    Article  MATH  ADS  Google Scholar 

  25. Loyalka S.K., Hickey K.A.: Velocity slip and defect: hard sphere gas. Phys. Fluids A 1, 612–614 (1989)

    Article  MATH  ADS  Google Scholar 

  26. Siewert C.E.: Kramers’ problem for a variable collision frequency model. Eur. J. Appl. Math. 12, 179–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Loyalka S.K., Tompson R.V.: The velocity slip problem: accurate solutions of the BGK model integral equation. Eur. J. Mech. B Fluids 28, 211–213 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Reynolds, M.A., Smolderen, J.J., Wendt, J.F.: Velocity profile measurements in the Knudsen layer for the Kramers problem. In: Becker, M., Fiebig, M. (eds.) Rarefied Gas Dynamics, vol. I, A.21-1-14. DFVLR-Press, Porz-Wahn (1974)

  29. Lockerby D.A., Reese J.M.: On the modelling of isothermal gas flows at the microscale. J. Fluid Mech. 604, 235–261 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Tang G.H., Zhang Y.H., Gu X.J., Emerson D.R.: Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows. EPL 83, 40008 (2008)

    Article  ADS  Google Scholar 

  31. Guo Z.L., Shi B.C., Zheng C.G.: An extended Navier–Stokes formulation for gas flows in the Knudsen layer near a wall. EPL 80, 24001 (2007)

    Article  ADS  Google Scholar 

  32. Xu K., Liu H.: A multiple-temperature kinetic model and its application to near continuum flows. Commun. Comput. Phys. 4, 1069–1085 (2008)

    Google Scholar 

  33. Truesdell C., Muncaster R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monotomic Gas. Academic Press, New York (1980)

    Google Scholar 

  34. Sone Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  35. Stops D.W.: The mean free path of gas molecules in the transition regime. J. Phys. D 3, 685–696 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, XJ., Emerson, D.R. & Tang, GH. Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach. Continuum Mech. Thermodyn. 21, 345–360 (2009). https://doi.org/10.1007/s00161-009-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0121-5

Keywords

PACS

Navigation