Skip to main content
Log in

Fluid penetration effects in porous media contact

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The contact boundary conditions at the interface between two fluid-saturated porous bodies are derived. The general derivation is performed within the well-founded framework of the Theory of Porous Media (TPM) based on the constituent balance relations of mass, momentum, and energy accounting for finite discontinuities at the contact surface. Particular attention is drawn to the effects associated with the interstitial fluid flux across the interface. The derived contact conditions include two kinematic continuity conditions for the solid velocity and the fluid seepage velocity as well as two jump conditions for the effective solid stress and the pore-fluid pressure. As an application, the common case of biphasic porous media contact proceeding from materially incompressible constituents and inviscid fluid properties is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alazmi B., Vafai K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer 44, 1735–1749 (2001)

    Article  MATH  Google Scholar 

  2. Alts T., Hutter K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water parts. i and ii. J. Non-Equilib. Thermodyn. 13, 221–280 (1988)

    MATH  Google Scholar 

  3. Armstrong C.G., Lai W.M., Mow V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173 (1984)

    Article  Google Scholar 

  4. Ateshian G.A.: A theoretical formulation for boundary friction in articular cartilage. J. Biomech. Eng. 119, 81–86 (1997)

    Article  Google Scholar 

  5. Ateshian G.A., Lai W.M., Zhu W.B., Mow V.C.: An asymptotic solution for two contacting biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)

    Article  Google Scholar 

  6. Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  7. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  8. Bishop A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)

    Google Scholar 

  9. de Boer R.: Trends in Continuum Mechanics of Porous Media. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  10. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 40, Universität-GH-Essen (1986)

  11. de Boer R., Ehlers W.: The development of the concept of effective stresses. Acta Mech. 83, 77–92 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bowen R.M.: Theory of mixtures. In: Eringen, A.C. (eds) Continuum Physics, vol III, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  13. Bowen R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  14. Bowen R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  15. Cieszko M., Kubik J.: Derivation of matching conditions at the contact surface betweeen fluid-saturated porous solid and bulk fluid. Transp. Porous Med. 34, 319–336 (1999)

    Article  Google Scholar 

  16. Coussy O.: Mechanics of Porous Continua, 2nd edn. Wiley, Chichester (1995)

    MATH  Google Scholar 

  17. Cowin S.C., Doty S.B.: Tissue Mechanics. Springer, New York (2006)

    Book  Google Scholar 

  18. Drumheller D.S.: The theoretical treatment of a porous solid using a mixture theory. Int. J. Solids Struct. 14, 441–456 (1978)

    Article  MATH  Google Scholar 

  19. Dunbar Jr., W.L., Ün, K., Donzelli, P.S., Spilker R.L.: An evaluation of three-dimensional diarthrodial joint contact using penetration data and the finite element method. J. Biomech. Eng. 123, 333–340 (2001)

    Article  Google Scholar 

  20. Ehlers, W.: Poröse Medien—ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Habilitation, Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen (1989)

  21. Ehlers W.: Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mech. 16, 63–76 (1996)

    Google Scholar 

  22. Ehlers W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Google Scholar 

  23. Ehlers W., Graf T., Ammann M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Engrg. 193, 2885–2910 (2004)

    Article  MATH  Google Scholar 

  24. Ehlers W., Markert B.: A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media. J. Biomech. Eng. 123, 418–424 (2001)

    Article  Google Scholar 

  25. Fisher-Cripps A.C.: Introduction to Contact Mechanics. Mechanical Engineering Series. Springer, New York (2000)

    Google Scholar 

  26. Gibson R.E., England G.L., Hussey M.J.L.: The theory of one-dimensional consolidation of saturated clays. Géotechnique 17, 261–273 (1967)

    Article  Google Scholar 

  27. Gurtin M.E.: An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, vol. 158. Academic Press, New York (1981)

    Google Scholar 

  28. Hadamard, J.: Leçons sur la propagation des ondes et les equations de l’hydrodynamique. Chelsea, New York (1949). Reprint of Herman, Paris 1903

  29. Hou J.S., Holmes M.H., Lai W.M., Mow V.C.: Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Eng. 111, 78–87 (1989)

    Google Scholar 

  30. Hou J.S., Mow V.C., Lai W.M., Holmes M.H.: An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 25, 247–259 (1992)

    Article  Google Scholar 

  31. Irschik H.: On the necessity of surface growth terms for the consistency of jump relations at a singular surface. Acta Mech. 162, 195–211 (2003)

    Article  MATH  Google Scholar 

  32. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  33. Kelly P.D.: A reacting continuum. Int. J. Eng. Sci. 2, 129–153 (1964)

    Article  MATH  Google Scholar 

  34. Kosinski W.: Field Singularities and Wave Analysis in Continuum Mechanics. Ellis Horwood, Chichester (1986)

    MATH  Google Scholar 

  35. Lai W.M., Hou J.S., Mow V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  36. Lewis R.W., Schrefler B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)

    MATH  Google Scholar 

  37. Mahnkopf, D.: Lokalisierung fluidgesättigter poröser Festkörper bei finiten elastoplastischen Deformationen. Dissertation, Bericht Nr. II-5 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart, Germany (2000)

  38. Mak A.F.: Unconfined compression of hydrated soft viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology 23, 371–383 (1986)

    Google Scholar 

  39. Mak A.F., Lai W.M., Mow V.C.: Biphasic indentation of articular cartilage—Part 1: Theoretical analysis. J. Biomech. 20, 703–714 (1987)

    Article  Google Scholar 

  40. Markert, B.: Porous Media Viscoelasticity with Application to Polymeric Foams. Dissertation, Report No. II-12 of the Institute of Applied Mechanics (CE), Universität Stuttgart, Germany (2005)

  41. Markert B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transp. Porous Med. 70, 427–450 (2007). doi:10.1007/s11242-007-9107-6

    Article  MathSciNet  Google Scholar 

  42. Morland L.W., Gray J.M.N.T.: Phase change interactions and singular fronts. Continuum Mech. Thermodyn. 7, 387–414 (1995)

    MATH  MathSciNet  Google Scholar 

  43. Morland L.W., Sellers S.: Multiphase mixtures and singular surfaces. Int. J. Nonlinear Mech. 36, 131–146 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G.: Biphasic creep and stress relaxation of articular cartilage: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)

    Google Scholar 

  45. Mow V.C., Kwan M.K., Lai W.M., Holmes M.H.: A finite deformation theory of linearly permeable soft hydrated tissues. In: Schmid-Schönbein, G.W., Woo, S.L.Y., Zweifach, B.W. (eds) Frontiers in Biomechanics, pp. 73–84. Springer, New York (1986)

    Google Scholar 

  46. Rajagopal K.R., Wineman A.S., Gandhi M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 1453–1463 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ratcliff A., Mow V.C.: Articular cartilage. In: Comper, W.D. (eds) Extracellular Matrix, vol. 1, Tissue Function, pp. 234–302. Harwood Academic Publishers, GmbH, Switzerland (1996)

    Google Scholar 

  48. Richardson S.: A model of the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327–336 (1971)

    Article  MATH  Google Scholar 

  49. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact: Variational Methods. Lect. Notes Phys. Springer, Berlin (2004)

  50. Skempton A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960)

    Google Scholar 

  51. Slattery J.C.: Interfacial Transport Phenomena. Springer, New York (1990)

    Google Scholar 

  52. Taylor G.I.: A model of the boundary condition of a porous material. part 1. J. Fluid Mech. 49, 319–326 (1971)

    Article  Google Scholar 

  53. Truesdell C., Noll W.: The non-linear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, vol. III/3, Springer, Berlin (1965)

    Google Scholar 

  54. Ün K., Spilker R.L.: A penetration-based finite element method for hyperelastic tissues in contact: Part1—Derivation of contact boundary conditions. J. Biomech. Eng. 128, 124–130 (2006)

    Article  Google Scholar 

  55. Williams W.O.: Constitutive equations for flow of an incompressible viscous fluid through a porous medium. Quart. J. Appl. Math. 128, 255–267 (1978)

    Google Scholar 

  56. Wriggers P.: Computational Contact Mechanics. Wiley, Chichester (2002)

    Google Scholar 

  57. Wu J.Z., Herzog W., Epstein M.: An improved solution for the contact of two biphasic cartilage layers. J. Biomech. 30, 371–375 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Markert.

Additional information

Communicated by S. L. Gavrilyuk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markert, B., Monastyrskyy, B. & Ehlers, W. Fluid penetration effects in porous media contact. Continuum Mech. Thermodyn. 20, 303–315 (2008). https://doi.org/10.1007/s00161-008-0083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0083-z

Keywords

PACS

Navigation