Skip to main content
Log in

Invariance correction to Grad’s equations: where to go beyond approximations?

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We review some recent developments of Grad’s approach to solving the Boltzmann equation and creating a reduced description. The method of the invariant manifold is put forward as a unified principle to establish corrections to Grad’s equations. A consistent derivation of regularized Grad’s equations in the framework of the method of the invariant manifold is given. A new class of kinetic models to lift the finite-moment description to a kinetic theory in the whole space is established. Relations of Grad’s approach to modern mesoscopic integrators such as the entropic lattice Boltzmann method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grad, H.: On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beskok, A., Karniadakis, G.E.: Microflows: Fundamentals and Simulation. Springer, Berlin (2001)

    Google Scholar 

  3. Kogan, A.M.: Derivation of Grad-type equations, study of their properties by the method of entropy maximization. Prikl. Math. Mech. 29, 122–133 (1965)

    Google Scholar 

  4. Lewis, R.M.: A unified principle in statistical mechanics. J. Math. Phys. 8, 1448–1459 (1967)

    Article  MATH  Google Scholar 

  5. Gorban, A.N.: Equilibrium Encircling. Equations of chemical kinetics, and their thermodynamic analysis. Nauka, Novosibirsk (1984)

    Google Scholar 

  6. Karlin, I.V.: Relaxation of chemical reaction rates under translationally nonequilibrium conditions. In: Proc. VIII USSR Symp. on Burning, Combustion, 97–99. Chernogolovka, Inst. Chem. Phys. (1986)

  7. Gorban, A.N., Karlin, I.V.: Quasi-equilibrium approximations and non-standard expansions in the theory of the Boltzmann kinetic equation. In: Khlebopros, R.G. (Ed.): Mathematical Modeling in Biology and Chemistry (New Approaches), pp.~69–117. Nauka, Novosibirsk (1991). English translation of the first part of this paper (triangle entropy method): http://arXiv.org/abs/cond-mat/0305599

  8. Gorban, A.N., Karlin, I.V.: Scattering rates versus moments: alternative grad equations. Phys. Rev. E 54, R3109–R3112 (1996)

    Article  Google Scholar 

  9. Gorban, A.N., Karlin, I.V.: Thermodynamic parameterization. Physica A 190, 393–404 (1992)

    Article  MathSciNet  Google Scholar 

  10. Levermore, C.D.: Moment closure hierarchies. J. Stat. Phys. 83, 1021 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ilg, P., Karlin, I.V., Öttinger, H.C.: Canonical distribution functions in polymer dynamics: I. Dilute solutions of flexible polymers. Physica A 315(3–4), 318–336 (2002)

    Article  Google Scholar 

  12. Ilg, P., Karlin, I.V., Kröger, M., Öttinger, H.C.: Canonical distribution functions in polymer dynamics: II. Liquid-crystalline polymers. Physica A 319, 134–150 (2003)

    Article  MATH  Google Scholar 

  13. Gorban, A.N., Gorban, P.A., Karlin, I.V.: Legendre integrators, postprocessing and quasiequilibrium. J. Non-Newtonian Fluid Mech. 120, 149–167 (2004)

    Article  MATH  Google Scholar 

  14. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer, Berlin (1993)

    MATH  Google Scholar 

  15. Bobylev, A.V.: On the Chapman-Enskog and Grad methods. Dokl. Acad. Nauk SSSR 262, 71 (1982)

    MathSciNet  Google Scholar 

  16. Karlin, I.V.: Method of Invariant Manifold in Kinetic Theory. PhD thesis, AMSE University, Tassin (1992)

    Google Scholar 

  17. Gorban, A.N., Karlin, I.V.: Method of invariant manifolds and regularization of acoustic spectra. Transport Theory and Stat. Phys. 23, 559–632 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gorban, A.N., Karlin, I.V.: New Methods for Solving the Boltzmann Equations, vol.~10 [Physical Kinetics] of Scientific Siberian A. AMSE Press, Tassin (1993)

    Google Scholar 

  19. Gorban, A.N., Karlin, I.V., Zinovyev, A.Yu.: Constructive methods of invariant manifolds for kinetic problems. Physics Reports 396, 197–403 (2004)

    Article  MathSciNet  Google Scholar 

  20. Gorban, A.N., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics, vol.~660 of Lect. Notes Phys. Springer, Berlin Heidelberg (2005)

    Google Scholar 

  21. Gorban, A.N., Karlin, I.V.: Uniqueness of thermodynamic projector and kinetic basis of molecular individualism. Physica A 336(3–4), 391–432 (2004) Preprint online: http://arxiv.org/abs/cond-mat/0309638

    Article  Google Scholar 

  22. Slemrod, M.: Renormalization of the Chapman-Enskog expansion: Isothermal fluid flow, Rosenau saturation. J. Stat. Phys. 91, 285–305 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karlin, I.V., Gorban, A.N., Dukek, G., Nonnenmacher, T.: Dynamic correction to moment approximations. Phys. Rev. E 57, 1668–1672 (1998)

    Article  Google Scholar 

  24. Zmievskii, V.B., Karlin, I.V., Deville, M.: The universal limit in dynamics of dilute polymeric solutions. Physica A 275(1–2), 152–177 (2000)

    Article  Google Scholar 

  25. Gorban, A.N., Karlin, I.V.: Structure and approximations of the Chapman-Enskog expansion for Grad linearized equations. Sov. Phys. JETP 73(4), 637–641 (1991)

    Google Scholar 

  26. Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: Derivation, linear analysis. Phys. Fluids 15, 2668–2680 (2003)

    Article  MathSciNet  Google Scholar 

  27. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  28. Gorban, A.N., Karlin, I.V., Zmievskii, V.B., Dymova, S.V.: Reduced description in reaction kinetics. Physica A 275, 361–379 (2000)

    Article  Google Scholar 

  29. Gorban, A.N., Karlin, I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58, 4751–4768 (2003)

    Article  Google Scholar 

  30. Gorban, A.N., Karlin, I.V., Zinovyev, A.Yu.: Invariant grids for reaction kinetics. Physica A 333, 106–154 (2004)

    Article  Google Scholar 

  31. Gorban, A.N., Karlin, I.V.: Short-wave limit of hydrodynamics: A soluble example. Phys. Rev. Lett. 77, 282–285 (1996)

    Article  PubMed  Google Scholar 

  32. Karlin, I.V., Gorban, A.N.: Hydrodynamics from Grad’s equations: What can we learn from exact solutions? Ann. Phys. (Leipzig) 11(10–11), 783–833 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Karlin, I.V., Dukek, G., Nonnenmacher, T.: Invariance principle for extension of hydrodynamics: Nonlinear viscosity. Phys. Rev. E 55(2), 1573–1576 (1997)

    Article  Google Scholar 

  34. Santos, A.: Nonlinear viscosity, velocity distribution function in a simple longitudinal flow. Phys. Rev. E 62, 4747–4751 (2000)

    Article  Google Scholar 

  35. Gorban, A.N., Karlin, I.V.: General approach to constructing models of the Boltzmann equation. Physica A 206, 401–420 (1994)

    Article  Google Scholar 

  36. Andries, P., Aoki, K., Perthame, B.: A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106, 993–1018 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shan, X., He, X.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65–68 (1998)

    Article  Google Scholar 

  38. Ansumali, S., Karlin, I.V.: Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107, 291–308 (2002)

    Article  MATH  Google Scholar 

  39. Ansumali, S., Karlin, I.V.: Single relaxation time model for entropic lattice Boltzmann methods. Phys. Rev. E 65(1–9), 056312 (2002)

    Article  MathSciNet  Google Scholar 

  40. Karlin, I.V., Gorban, A.N., Succi, S., Boffi, V.: Maximum entropy principle for lattice kinetic equations. Phys. Rev. Lett. 81, 6–9 (1998)

    Article  Google Scholar 

  41. Karlin, I.V., Ferrante, A., Öttinger, H.C.: Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47, 182–188 (1999)

    Article  Google Scholar 

  42. Boghosian, B.M., Yepez, J., Coveney, P.V., Wagner, A.J.: Entropic lattice Boltzmann methods. Proc. Roy. Soc. Lond. A 457, 717–766 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ansumali, S., Karlin, I.V.: Kinetic boundary condition for the lattice Boltzmann method. Phys. Rev. E 66(1–6), 026311 (2002)

    Article  MathSciNet  Google Scholar 

  44. Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for simulating hydrodynamics. Europhys. Lett. 63, 798–804 (2003)

    Article  Google Scholar 

  45. Cercignani, C.: Theory and Application of the Boltzmann Equation. Scottish Academic Press, Edinburgh (1975)

    MATH  Google Scholar 

  46. Ansumali, S., Chikatamarla, S.S., Frouzakis, C.M., Boulouchos, K.: Entropic lattice Boltzmann simulation of the flow past square cylinder. Int. J. Mod. Phys. C 15(3), 435–445 (2004)

    Article  MATH  Google Scholar 

  47. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics, Beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  48. Karlin, I.V., Ansumali, S., De Angelis, E., Öttinger, H.C., Succi, S.: Entropic lattice Boltzmann method for large scale turbulence simulation. http://xxx.lanl.gov/abs/cond-mat/0306003 (2003)

  49. Ansumali, S.: Minimal kinetic modeling of hydrodynamics. PhD thesis, Swiss Federal Inst. of Tech. Zürich, 15534 (2004)

    Google Scholar 

  50. Broadwell, J.E.: Study of rarefied shear flow by the discrte velocity method. J. Fluid Mech. 19, 401–414 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  51. Ho, C.M., Tai, Y.C.: Micro-electro-mechanical-systems(MEMS), fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998)

    Article  Google Scholar 

  52. Sone, Y.: Kinetic Theory, Fluid Dynamics. Birkhäuser, Basel (2002)

    Google Scholar 

  53. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of gas flows. Theory and Application of the Boltzmann Equation. Clarendon Press, Oxford (1994)

    Google Scholar 

  54. Oran, E.S., Oh, C.K., Cybyk, B.Z.: Direct simulation Monte Carlo: Recent advances, applications. Annu. Rev. Fluid Mech. 30, 403–441 (1998)

    Article  MathSciNet  Google Scholar 

  55. Grmela, M., Karlin, I.V., Zmievski, V.B.: Boundary layer variational principle: A case study. Phys. Rev. E 66(1–12), 011201 (2002)

    Article  Google Scholar 

  56. Nie, X., Doolen, G., Chen, S.: Lattice-Boltzmann simulations of fluid flows in MEMS. J. Stat. Phys. 107, 279–289 (2002)

    Article  MATH  Google Scholar 

  57. Lim, C.Y., Shu, C., Niu, X.D., Chew, Y.T.: Application of lattice Boltzmann method to simulate microchannel flows. Phys. Fluid 107, 2299–2308 (2002)

    Article  Google Scholar 

  58. Succi, S.: Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys. Rev. Lett. 89, 064502 (2002)

    Article  PubMed  Google Scholar 

  59. Li, B., Kwok, D.: Discrete Boltzmann equation for microfluidics. Phys. Rev. Lett. 90, 124502 (2003)

    Article  PubMed  Google Scholar 

  60. Niu, X.D., Shu, C., Chew, Y.T.: Lattice Boltzmann BGK model for simulation of micro flows. Euro. Phys. Lett. 67, 600–606 (2004)

    Article  Google Scholar 

  61. Ansumali, S., Karlin, I.V., Frouzakis, Ch. E., Boulouchos, K.B.: Entropic lattice Boltzmann method for microflows. http://xxx.lanl.gov/abs/cond-mat/0412555 (2004)

  62. Ansumali, S., Frouzakis, Ch. E., Karlin, I.V., Kevrekidis, I.G.: Exploring hydrodynamic closures for the lid-driven micro-cavity. http://arxiv.org/abs/cond-mat/0502018 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliya V. Karlin.

Additional information

Communicated by H. Struchtrup

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorban, A.N., Karlin, I.V. Invariance correction to Grad’s equations: where to go beyond approximations?. Continuum Mech. Thermodyn. 17, 311–335 (2005). https://doi.org/10.1007/s00161-005-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-005-0202-z

Keywords

PACS

Navigation