Skip to main content
Log in

Efficient hybrid topology and shape optimization combining implicit and explicit design representations

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents an interactive hybrid topology optimization method that (1) employs density for topology optimization and (2) in a seamless fashion uses a Deformable Simplicial Complex for shape optimization. Omitting hole insertions during the shape optimization allows us to utilize adaptive mesh coarsening, which reduces the mesh size with up to seven times. The result is a combined method which can reduce computation time up to ten times in comparison with pure Lagrangian methods, while still producing adaptive meshes of good quality for analysis and design. Given the robustness of the method, we are able to perform topology optimization by explicit meshing and shape optimization on a mobile device at frame rates that allow for real-time user interaction. The resulting “TopOpt Shape” app is available in the App Store for iOS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aage N, Nobel-Jørgensen M, Andreasen CS, Sigmund O (2013) Interactive topology optimization on hand-held devices. Struct Multidiscip Optim 47:1–6

    Article  Google Scholar 

  • Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Mathematique 349(17-18):999– 1003

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Compute Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Bærentzen JA Deformable Simplicial Complex. https://github.com/janba/2D-DSC

  • Bendsoe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1:193–202

    Article  Google Scholar 

  • Bletzinger KU, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29(1-4):201–216

    Article  Google Scholar 

  • Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans Math Softw 35(3):1–14

    Article  MathSciNet  Google Scholar 

  • Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS) 35(3):22

    Article  MathSciNet  Google Scholar 

  • Christiansen AN, Bærentzen JA, Nobel-Jørgensen M, Aage N, Sigmund O (2015) Combined shape and topology optimization of 3D structures. Computers & Graphics 46:25–35

    Article  Google Scholar 

  • Christiansen AN, Nobel-jørgensen M, Aage N, Sigmund O, Bæ rentzen JA (2013) Topology optimization using an explicit interface representation. Structural and Multidisciplinary Optimization 49(3):387–399

    Article  MathSciNet  Google Scholar 

  • Da F, Batty C, Grinspun E (2014) Multimaterial mesh-based surface tracking. ACM Trans Graph 33(4):1–11

    Article  Google Scholar 

  • Davis TA (2015) Suite sparse. http://faculty.cse.tamu.edu/davis/suitesparse.html

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Structural Optimization 8(1):42–51

    Article  Google Scholar 

  • Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13-14):1447–1455

    Article  Google Scholar 

  • Kim DH, Lee SB, Kwank BM, Kim HG, Lowther DA (2008) Smooth boundary topology optimization for electrostatic problems through the combination of shape and topological design sensitivities. IEEE Trans Magn 44(6):1002–1005

    Article  Google Scholar 

  • Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) Combined shape and topology optimization for minimization of maximal von Mises stress. Struct Multidiscip Optim 55(5):1541–1557

    Article  MathSciNet  Google Scholar 

  • Misztal MK, Bærentzen JA (2012) Topology-adaptive interface tracking using the deformable simplicial complex. ACM Trans Graph 31(3):1–12

    Article  Google Scholar 

  • Nambiar RV, Valera RS, Lawrence KL, Morgan RB, Amil D (1993) An algorithm for adaptive refinement of triangular element meshes. Int J Numer Methods Eng 36(3):499–509

    Article  MATH  Google Scholar 

  • Nguyen TT, Dahl VA, Bærentzen JA, Trinderup CH (2018) Multi-phase volume segmentation with tetrahedral mesh. In: BMVC, pp 2–3

  • Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces. vol 153 Springer Science & Business Media

  • Sigmund O (2003) Topology optimization—theory, methods and applications

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Struct Multidiscip Optim 22:179–187

    Article  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wojtan C, Thürey N, Gross M, Turk G (2009) Deforming meshes that split and merge. ACM Trans Graph 28(3):1

    Article  Google Scholar 

  • Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90-91(1):55–64

    Article  Google Scholar 

  • Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87 (9):844–868

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work received financial support from the Villum Foundation (through the VILLUM investigator project InnoTop).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan T. Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Julián Andrés Norato

Replication of results

Section 6 introduces the TopOpt Shape app that uses the proposed method for structural optimization.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Bærentzen, J.A., Sigmund, O. et al. Efficient hybrid topology and shape optimization combining implicit and explicit design representations. Struct Multidisc Optim 62, 1061–1069 (2020). https://doi.org/10.1007/s00158-020-02658-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02658-5

Keywords

Navigation