Skip to main content
Log in

Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Variability of load magnitude/direction is a most significant source of uncertainties in practical engineering. This paper investigates robust topology optimization of structures subjected to uncertain dynamic excitations. The unknown-but-bounded dynamic loads/accelerations are described with the non-probabilistic ellipsoid convex model. The aim of the optimization problem is to minimize the absolute dynamic compliance for the worst-case loading condition. For this purpose, a generalized compliance matrix is defined to construct the objective function. To find the optimal structural layout under uncertain dynamic excitations, we first formulate the robust topology optimization problem into a nested double-loop one. Here, the inner-loop aims to seek the worst-case combination of the excitations (which depends on the current design, and is usually to be found by a global optimization algorithm), and the outer-loop optimizes the structural topology under the found worst-case excitation. To tackle the inherent difficulties associated with such an originally nested formulation, we convert the inner-loop into an inhomogeneous eigenvalue problem using the optimality condition. Thus the double-loop problem is reformulated into an equivalent single-loop one. This formulation ensures that the strict-sense worst-case combination of the uncertain excitations for each intermediate design be located without resorting to a time-consuming global search algorithm. The sensitivity analysis of the worst-case objective function value is derived with the adjoint variable method, and then the optimization problem is solved by a gradient-based mathematical programming method. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bae K-R, Wang S, Choi KK (2002) Reliability-based topology optimization. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, USA

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier Science, Amsterdam

  • Beyer H-G, Sendhoff B (2007) Robust optimization–a comprehensive survey. Comput Methods Appl Mech Eng 196(33):3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Brittain K, Silva M, Tortorelli DA (2012) Minmax topology optimization. Struct Multidiscipl Optim 45(5):657–668

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscipl Optim 41(4):507–524

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng G, Xu L, Jiang L (2006) A sequential approximate programming strategy for reliability-based structural optimization. Comput Struct 84(21):1353–1367

    Article  Google Scholar 

  • Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86(13):1426–1435

    Article  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscipl Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193(23):2221–2237

    Article  MATH  Google Scholar 

  • Du J, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading–Part I: new computational approach for 2D problems. Struct Multidiscipl Optim 27(3):151–165

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2007) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscipl Optim 33(4–5):305–321

    Article  MathSciNet  Google Scholar 

  • Du J, Sun C (2015) Reliability-based microstructural topology design with respect to vibro-acoustic criteria. In: 11th World Congress on Structural and Multidisciplinary Optimization, Sydney, Australia

  • Dunning PD, Kim HA (2013) Robust topology optimization: Minimization of expected and variance of compliance. AIAA J 51(11):2656–2664

    Article  Google Scholar 

  • Dunning PD, Kim HA, Mullineux G (2011) Introducing loading uncertainty in topology optimization. AIAA J 49(4):760–768

    Article  Google Scholar 

  • Frangopol DM, Corotis RB (1996) Reliability-based structural system optimization: state-of-the-art versus state-of-the-practice. In: Analysis and Computation

  • Golub, G. H. (1973). Some modified matrix eigenvalue problems. Siam Review, 15(2), 318-334

  • Guest JK, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198(1):116–124

    Article  MathSciNet  MATH  Google Scholar 

  • Jung H-S, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Analys Des 41(3):311–331

    Article  MathSciNet  Google Scholar 

  • Kang Z, Zhang W (2016) Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Comput Methods Appl Mech Eng 300:461–489

    Article  MathSciNet  Google Scholar 

  • Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscipl Optim 46(1):51–67

    Article  MathSciNet  MATH  Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscipl Optim 26(5):295–307

    Article  Google Scholar 

  • Kocvara M (2013) On robustness criteria and robust topology optimization with uncertain loads. arXiv preprint arXiv:13077547

  • Kreisselmeier G, Steinhauser R (1979) Systematische Auslegung von Reglern durch Optimierung eines vektoriellen Gütekriteriums/Systematic controller design by optimization of a vector performance index. at-Automatisierung 27(1–12):76–79

    MATH  Google Scholar 

  • Liu Y, Cai D (1998) Inhomogeneous eigenvalue problems. Tsinghua Sci Technol 3(4):1260–1264

    MathSciNet  MATH  Google Scholar 

  • Liu H, Zhang W, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscipl Optim 51(6):1321–1333

    Article  MathSciNet  Google Scholar 

  • Lombardi M, Haftka RT (1998) Anti-optimization technique for structural design under load uncertainties. Comput Methods Appl Mech Eng 157(1):19–31

    Article  MATH  Google Scholar 

  • Luo Y, Kang Z, Li A (2009a) Structural reliability assessment based on probability and convex set mixed model. Comput Struct 87(21):1408–1415

    Article  Google Scholar 

  • Luo Y, Kang Z, Luo Z, Li A (2009b) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidiscipl Optim 39(3):297–310

    Article  MathSciNet  MATH  Google Scholar 

  • Ma Z-D, Kikuchi N, Hagiwara I (1993) Structural topology and shape optimization for a frequency response problem. Computat Mech 13(3):157–174

    Article  MathSciNet  MATH  Google Scholar 

  • Mattheij RM, Söderlind G (1987) On inhomogeneous eigenvalue problems. I. Linear Algebra Appl 88:507–531

    Article  MathSciNet  MATH  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81(8):813–824

    Article  Google Scholar 

  • Mogami K, Nishiwaki S, Izui K, Yoshimura M, Kogiso N (2006) Reliability-based structural optimization of frame structures for multiple failure criteria using topology optimization techniques. Struct Multidiscipl Optim 32(4):299–311

    Article  Google Scholar 

  • Olhoff N, Du J (2014a) Introductory notes on topological design optimization of vibrating continuum structures. In: Topology optimization in structural and continuum mechanics. Springer, Vienna pp 259–273

  • Olhoff N, Du J (2014b) Topological design for minimum sound emission from structures under forced vibration. In: Topology optimization in structural and continuum mechanics. Springer, Vienna pp 341–357

  • Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 191(32):3491–3507

    Article  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscipl Optim 20(1):2–11

    Article  Google Scholar 

  • Poon NM, Martins JR (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidiscipl Optim 34(1):61–73

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25(4):493–524

    Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band–gap materials and structures by topology optimization. Philos Trans Roy Soc Lond Math Phys Eng Sci 361(1806):1001–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscipl Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscipl Optim 22(2):116–124

    Article  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200(25):2268–2281

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Makihara K, Kogiso N, Kitamura M (2014) Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems. J Sound Vib 333(2):327–344

    Article  Google Scholar 

  • Takezawa A, Daifuku M, Nakano Y, Nakagawa K, Yamamoto T, Kitamura M (2016) Topology optimization of damping material for reducing resonance response based on complex dynamic compliance. J Sound Vib 365:230–243

    Article  Google Scholar 

  • Thore C-J, Holmberg E, Klarbring A (2015) Large-scale robust topology optimization under load-uncertainty. In: Proceedings, 11th World Congress on Structural and Multidisciplinary Optimization, Sydney, Australia

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscipl Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Xie Y, Steven G (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

    Article  MATH  Google Scholar 

  • Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199(25):1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Kang Z (2013) Topology optimization of damping layers for minimizing sound radiation of shell structures. J Sound Vib 332(10):2500–2519

    Article  Google Scholar 

  • Zhang X, Kang Z (2014) Topology optimization of piezoelectric layers in plates with active vibration control. J Int Mater Syst Struct 25(6):697–712

    Article  Google Scholar 

  • Zhang W, Liu H, Gao T (2015) Topology optimization of large-scale structures subjected to stationary random excitation: an efficient optimization procedure integrating pseudo excitation method and mode acceleration method. Comput Struct 158:61–70

    Article  Google Scholar 

  • Zhao X, Song W, Gea HC, Xu L (2014) Topology optimization with unknown-but-bounded load uncertainty. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, USA

Download references

Acknowledgments

The authors would like to thank Prof. Krister Svanberg for providing the source code of the GCMMA algorithm. The authors also gratefully acknowledge the support of the Natural Science Foundation of China (11425207, U1508209 and 91530110), China Postdoctoral Science Foundation (2015M581328), and Research Project of State Key Laboratory of Mechanical System and Vibration (MSV201603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Kang, Z. & Zhang, W. Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis. Struct Multidisc Optim 54, 1469–1484 (2016). https://doi.org/10.1007/s00158-016-1607-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1607-y

Keywords

Navigation