Skip to main content
Log in

Validation and updating in a large automotive vibro-acoustic model using a P-box in the frequency domain

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, a model validation framework is proposed and applied to a large vibro-acoustic finite element (FE) model of a passenger car. The framework introduces a p-box approach with an efficient quantification scheme of uncertainty sources and a new area metric which is relevant to the responses in the frequency domain. To prioritize the input uncertainties out of the enormous FE model, the experts’ knowledge is utilized to select candidate input parameters which have large potential influences on the response of interests (ROI) among several thousands of input parameters. Next, a variance-based sensitivity analysis with an orthogonal array is introduced in effort to quantify the influence of the selected input parameters on the ROIs. The employment of the eigenvector dimension reduction method and orthogonal combinations of interval-valued input parameters provides the p-box of the ROI even if the size of the FE model is very large. A color map and the u-pooling of the p-boxes over the frequency band as well as the p-box at different frequencies are introduced to assess the model error and quantitative contributions of the aleatory and the epistemic input uncertainties to the overall variability of the ROIs in the frequency domain. After assessing the model error, the FE model is updated. It was found that the sensitivity results and the experts’ knowledge about the associated components effectively determine the modifications of the component models and the input parameter values during the updating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Babuska I, Oden JT (2004) Verification and validation in computational engineering and science: basic concepts. Comput Methods Appl Mech Eng 193:4057–4066. doi:10.1016/j.cma.2004.03.002

    Article  MathSciNet  MATH  Google Scholar 

  • Barthelmann V, Novak E, Ritter K (2000) High dimensional polynomial interpolation on sparse grids. Adv Comput Math 12:273–288

    Article  MathSciNet  MATH  Google Scholar 

  • Campbell K (2006) Statistical calibration of computer simulations. Reliab Eng Syst Saf 91:1358–1363. doi:10.1016/j.ress.2005.11.032

    Article  Google Scholar 

  • Choi KK, Kim N-H (2006) Structural sensitivity analysis and optimization 1: linear systems. Springer Science & Business Media

  • Choi KK, Shim I, Wang S (1997) Design sensitivity analysis of structure-induced noise and vibration. J Vib Acoust 119:173–179

    Article  Google Scholar 

  • Choi S-K, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42:1191–1198

    Article  Google Scholar 

  • Choi S-K, Grandhi RV, Canfield RA (2007) Reliability-based structural design. Springer

  • Durand J-F, Soize C, Gagliardini L (2008) Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation. J Acoust Soc Am 124:1513–1525. doi:10.1121/1.2953316

    Article  Google Scholar 

  • Ferson S, Ginzburg LR (1996) Different methods are needed to propagate ignorance and variability. Reliab Eng Syst Saf 54:133–144. doi:10.1016/S0951-8320(96)00071-3

    Article  Google Scholar 

  • Ferson S, Oberkampf WL, Ginzburg L (2008) Model validation and predictive capability for the thermal challenge problem. Comput Methods Appl Mech Eng 197:2408–2430. doi:10.1016/j.cma.2007.07.030

    Article  MATH  Google Scholar 

  • Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithm 18:209–232

    Article  MathSciNet  MATH  Google Scholar 

  • Hu C, Youn BD (2011a) Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct Multidiscip Optim 43:419–442

    Article  MathSciNet  MATH  Google Scholar 

  • Hu C, Youn BD (2011b) An asymmetric dimension-adaptive tensor-product method for reliability analysis. Struct Saf 33:218–231

    Article  Google Scholar 

  • Jung BC, Lee D, Youn BD, Lee S (2011) A statistical characterization method for damping material properties and its application to structural-acoustic system design. J Mech Sci Technol 25:1893–1904

    Article  Google Scholar 

  • Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63:425–464

    Article  MathSciNet  MATH  Google Scholar 

  • Kim NH, Dong J, Choi KK, Vlahopoulos N, Ma Z-D, Castanier M, Pierre C (2003) Design sensitivity analysis for sequential structural–acoustic problems. J Sound Vib 263:569–591

    Article  Google Scholar 

  • Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods vol 706. Wiley

  • Kwon J-H, Lee D (2015) Variability analysis of vibrational responses in a passenger car considering the uncertainties of elastomers. Proc Inst Mech Eng C J Mech Eng Sci. doi:10.1177/0954406215612816

    Google Scholar 

  • Lardeur P, Scigliano R, Scionti M (2013) Verification and validation for the vibration study of automotive structures modelled by finite elements. J Strain Anal Eng Des 48:59–72. doi:10.1177/0309324712466508

    Article  Google Scholar 

  • Lee D, Ahn T-S (2014) A boundary element model for acoustic responses in the ear canal and its statistical validation and updating. J Mech Sci Technol 28:1203–1217

    Article  Google Scholar 

  • Lee D, Ahn T-S (2015) Statistical calibration of a finite element model for human middle ear. J Mech Sci Technol 29:2803–2815. doi:10.1007/s12206-015-0609-9

    Article  Google Scholar 

  • Lee D, Hwang I-S (2011) Analysis on the dynamic characteristics of a rubber mount considering temperature and material uncertainties. Trans Comput Struct Eng Inst Korea 24:383–389

    Google Scholar 

  • Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57:345–384

    Article  Google Scholar 

  • Phadke MS (1989) Quality engineering using robust design. Prentice Hall, London

    Google Scholar 

  • Rao CR (1947) Factorial experiments derivable from combinatorial arrangements of arrays. Suppl J R Stat Soc 9:128–139. doi:10.2307/2983576

    Article  MathSciNet  MATH  Google Scholar 

  • Roy R (1990) A primer on the Taguchi method. Van Norstrand Reinhold, New York

    MATH  Google Scholar 

  • Roy CJ, Oberkampf WL (2011) A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput Methods Appl Mech Eng 200:2131–2144. doi:10.1016/j.cma.2011.03.016

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli A et al. (2008) Global sensitivity analysis: the primer. John Wiley & Sons

  • Scigliano R, Scionti M, Lardeur P (2011) Verification, validation and variability for the vibration study of a car windscreen modeled by finite elements. Finite Elem Anal Des 47:17–29

    Article  Google Scholar 

  • Soize C (2013) Stochastic modeling of uncertainties in computational structural dynamics—recent theoretical advances. J Sound Vib 332:2379–2395. doi:10.1016/j.jsv.2011.10.010

    Article  Google Scholar 

  • Trucano TG, Swiler LP, Igusa T, Oberkampf WL, Pilch M (2006) Calibration, validation, and sensitivity analysis: what’s what. Reliab Eng Syst Saf 91:1331–1357. doi:10.1016/j.ress.2005.11.031

    Article  Google Scholar 

  • Xiong Y, Chen W, Tsui K-L, Apley DW (2009) A better understanding of model updating strategies in validating engineering models. Comput Methods Appl Mech Eng 198:1327–1337. doi:10.1016/j.cma.2008.11.023

    Article  MATH  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics. Int J Numer Methods Eng 61:1992–2019

    Article  MATH  Google Scholar 

  • Youn B, Xi Z, Wang P (2008) Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis. Struct Multidiscip Optim 37:13–28. doi:10.1007/s00158-007-0210-7

    Article  MathSciNet  MATH  Google Scholar 

  • Youn BD, Jung BC, Xi Z, Kim SB, Lee WR (2011) A hierarchical framework for statistical model calibration in engineering product development. Comput Methods Appl Mech Eng 200:1421–1431. doi:10.1016/j.cma.2010.12.012

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (Grant No. 10048305), funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dooho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Kim, N.H. & Kim, HS. Validation and updating in a large automotive vibro-acoustic model using a P-box in the frequency domain. Struct Multidisc Optim 54, 1485–1508 (2016). https://doi.org/10.1007/s00158-016-1427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1427-0

Keywords

Navigation