Skip to main content
Log in

A level-set method for steady-state and transient natural convection problems

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper introduces a topology optimization method for 2D and 3D, steady-state and transient heat transfer problems that are dominated by natural convection in the fluid phase and diffusion in the solid phase. The geometry of the fluid-solid interface is described by an explicit level set method which allows for both shape and topological changes in the optimization process. The heat transfer in the fluid is modeled by an advection-diffusion equation. The fluid velocity is described by the incompressible Navier-Stokes equations augmented by a Boussinesq approximation of the buoyancy forces. The temperature field in the solid is predicted by a linear diffusion model. The governing equations in both the fluid and solid phases are discretized in space by a generalized formulation of the extended finite element method which preserves the crisp geometry definition of the level set method. The interface conditions at the fluid-solid boundary are enforced by Nitsche’s method. The proposed method is studied for problems optimizing the geometry of cooling devices. The numerical results demonstrate the applicability of the proposed method for a wide spectrum of problems. As the flow may exhibit dynamic instabilities, transient phenomena need to be considered when optimizing the geometry. However, the computational burden increases significantly when the time evolution of the flow fields needs to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexandersen J (2011) Topology optimization for convection problems. Bachelor thesis. DTU Mekanik

  • Alexandersen J (2015) Topology optimisation of passive coolers for light-emitting diode lamps. In: Proceedings of the 11th World Congress of Structural and Multidisciplinary Optimisation

  • Alexandersen J, Aage N, Andreasen CS, Sigmund O (2014) Topology optimisation for natural convection problems. Int J Numer Methods Fluids 76(10):699–721

    Article  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader A (2002) A level-set method for shape optimization. Comptes Rendus Mathematique 334(12):1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Amestoy P, Duff I, LExcellent J (1998) MUMPS multifrontal massively parallel solver. Tech. rep., Version 2.0. Technical Report TR/PA/98/02. CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France

  • Bahadur R, Bar-Cohen A (2005) Thermal design and optimization of natural convection polymer pin fin heat sinks. IEEE Trans Compon Packag Technol 28(2):238–246

    Article  Google Scholar 

  • Baïri A, Zarco-Pernia E, de María JMG (2014) A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity. Appl Therm Eng 63(1):304–322

    Article  Google Scholar 

  • Bruns T (2007) Topology optimization of convection-dominated, steady-state heat transfer problems. Int J Heat Mass Transf 50(15–16):2859–2873

    Article  MATH  Google Scholar 

  • Burger M, Osher SJ (2005) A survey in mathematics for industry a survey on level set methods for inverse problems and optimal design. Euro Jnl of Applied Mathematics 16:263–301

    Article  MathSciNet  MATH  Google Scholar 

  • Coffin P, Maute K (2015) Level set topology optimization of cooling and heating devices using a simplified convection model. Under review in Structural and Multidisciplinary Optimization

  • Davis TA (2004) Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method. ACM Trans Math Softw (TOMS) 30(2):196–199

    Article  MathSciNet  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Engng 78:229–252

    Article  MathSciNet  MATH  Google Scholar 

  • Franca LP, Frey SL, Hughes TJ (1992) Stabilized finite element methods: I. application to the advective-diffusive model. Comput Methods Appl Mech Eng 95(2):253–276

    Article  MathSciNet  MATH  Google Scholar 

  • Fries TP, Belytschko T (2006) The intrinsic XFEM: A method for arbitrary discontinuities without additional unkowns. Int J Numer Methods Eng 68:1358–1385

    Article  MATH  Google Scholar 

  • Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  • Golmon S, Maute K, Dunn ML (2012) Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis. Int J Numer Methods Eng 92(5):475–494

    Article  MathSciNet  Google Scholar 

  • Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52(11–12):2721–2732

    Article  MATH  Google Scholar 

  • Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid-structure interaction problems. Struct Multidiscip Optim. 1–17. doi:10.1007/s00158-015-1229-9

  • Khoei AR (2015) Extended finite element method: theory and applications. Wiley

  • Koga AA, Lopes ECC, Villa Nova HF, Lima CRd, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transf 64:759–772

    Article  Google Scholar 

  • Kontoleontos E, Papoutsis-Kiachagias E, Zymaris A, Papadimitriou D, Giannakoglou K (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Optim 45(8):941–961

    Article  MathSciNet  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International Federation of Active Contrals Symposium on Computer Aided Design of Control Systems, Zurich, Switzerland

  • Kreissl S, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253

    MathSciNet  MATH  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Article  MathSciNet  MATH  Google Scholar 

  • Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for heaviside enriched XFEM. Comput Mech 54(5):1357–1374

    Article  MathSciNet  MATH  Google Scholar 

  • Lee K (2012) Topology optimization of convective cooling system designs. PhD thesis, The University of Michigan

  • Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705

    Article  MathSciNet  MATH  Google Scholar 

  • Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

    Article  MathSciNet  Google Scholar 

  • Makhija D, Maute K (2015) Level set topology optimization of scalar transport problems. Struct Multidiscip Optim 51(2):267–285

    Article  MathSciNet  Google Scholar 

  • Marck G, Nemer M, Harion JL (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numerical Heat Transfer, Part B: Fundamentals 63(6):508–539

    Article  MATH  Google Scholar 

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid–thermal interaction problems under constant input power. Struct Multidiscip Optim 47(4):571–581

    Article  MATH  Google Scholar 

  • McConnell C, Pingen G (2012) Multi-layer, pseudo 3d thermal topology optimization of heat sinks. In: ASME 2012 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp 2381–2392

  • Moon H, Kim C, Wang S (2004) Reliability-based topology optimization of thermal systems considering convection heat transfer. In: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, August 30-September 1, Albany, NY

  • Morrison AT (1992) Optimization of heat sink fin geometries for heat sinks in natural convection. In: InterSociety Conference on Thermal Phenomena in Electronic Systems, 1992. I-THERM III. IEEE, pp 145–148

  • Nitsche J (1975) Uber ein Variationsprinzip zur Loesung von Dirichlet-Problemen bei Verwendung von Teilraeumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg 36:9–15

    Article  MathSciNet  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131

    Article  MathSciNet  MATH  Google Scholar 

  • Schott B, Rasthofer U, Gravemeier V, Wall W (2014) A face-oriented stabilized Nitsche-type extended variational multiscale method for incompressible two-phase flow. Int J Numer Methods Eng. doi:10.1002/nme.4789

    MathSciNet  Google Scholar 

  • Seo JH (2009) Optimal design of material microstructure for convective heat transfer in a solid-fluid mixture. PhD thesis, University of Michigan at Ann Arbor

  • Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346

    Article  MATH  Google Scholar 

  • Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242

    Article  MATH  Google Scholar 

  • Touihri R, Hadid HB, Henry D (1999) On the onset of convective instabilities in cylindrical cavities heated from below. i. pure thermal case. Phys Fluids (1994-present) 11(8):2078–2088

    Article  MathSciNet  MATH  Google Scholar 

  • Tran AB, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within xfem. Int J Numer Methods Eng 85(11):1436–1459

    Article  MATH  Google Scholar 

  • van Dijk N, Maute K, Langelaar M, Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Wang M (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions. Int J Heat Mass Transf 81:878– 888

    Article  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S (2011) A level set-based topology optimization method for maximizing thermal diffusivity in problems including design-dependent effects. J Mech Des 133 (3):031,011

    Article  Google Scholar 

  • Yin L, Ananthasuresh G (2002) A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sensors and Actuators A: Physical 97:599–609

    Article  Google Scholar 

  • Yoon G, Kim Y (2005) The element connectivity parameterization formulation for the topology design optimization of multiphysics systems. Int J Numer Methods Eng 64(12):1649–1677

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24:1225–1233

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation under grant EFRI-SEED 1038305 and CBET 1246854. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Coffin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coffin, P., Maute, K. A level-set method for steady-state and transient natural convection problems. Struct Multidisc Optim 53, 1047–1067 (2016). https://doi.org/10.1007/s00158-015-1377-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1377-y

Keywords

Navigation