Skip to main content
Log in

A practical multiscale approach for optimization of structural damping

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A simple and practical multiscale approach suitable for topology optimization of structural damping in a component ready for additive manufacturing is presented. The approach consists of two steps: First, the homogenized loss factor of a two-phase material is maximized. This is done in order to obtain a range of isotropic microstructures that have a connected stiff material phase. Second, the structural damping of the component is maximized using material interpolations based on the homogenized properties of the microstructures. In order to achieve convergence towards a discrete set of material phases in the macroscopic problem, a material interpolation that favors values close to the predefined material densities is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Method Appl Mech Eng 290:156–182

    Article  MathSciNet  Google Scholar 

  • Andreasen CS, Sigmund O (2012) Multiscale modeling and topology optimization of poroelastic actuators. Smart Mater Struct 21(6)

  • Andreasen CS, Andreassen E, Jensen JS, Sigmund O (2014) On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J Mech Phys Solids 63(1):228–241

    Article  MathSciNet  Google Scholar 

  • Andreassen E, Andreasen CS (2014) How to determine composite material properties using numerical homogenization. Comput Mat Sci 83:488–495

  • Barbarosie C, Toader AM (2012) Optimization of bodies with locally periodic microstructure. Mech Adv Mater Struc 19(4):290–301

    Article  Google Scholar 

  • Bendsøe M, Guedes J, Haber R, Pedersen P, Taylor J (1994) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech-T ASME 61(4):930– 937

    Article  Google Scholar 

  • Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidisc Optim 35(2):107–115

    Article  Google Scholar 

  • Coelho PG, Cardoso JB, Fernandes PR, Rodrigues HC (2011) Parallel computing techniques applied to the simultaneous design of structure and material. Adv Eng Softw 42(5):219–227

    Article  MATH  Google Scholar 

  • El-Sabbagh A, Baz A (2014) Topology optimization of unconstrained damping treatments for plates. Eng Optim 46(9):1153–1168

    Article  MathSciNet  Google Scholar 

  • Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Method Appl Mech Eng 83(2):143–198

    Article  MathSciNet  MATH  Google Scholar 

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Hassani B, Hinton E (1998) A review of homogenization and topology optimization I - homogenization theory for media with periodic structure. Comput Struct 69(6):707–717

    Article  MATH  Google Scholar 

  • Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Meth Eng 15(9):1413–1418

    Article  MATH  Google Scholar 

  • Khanoki SA, Pasini D (2012) Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. J Biomech Eng-T ASME 134(3):031,004

    Article  Google Scholar 

  • Kim SY, Mechefske CK, Kim IY (2013) Optimal damping layout in a shell structure using topology optimization. J Sound Vib 332(12):2873–2883

    Article  Google Scholar 

  • Ling Z, Ronglu X, YiW, El-Sabbagh A (2011) Topology optimization of constrained layer damping on plates using method of moving asymptote (MMA) approach. Shock Vib 18(1–2):221–244

  • Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidisc Optim 24(1):1–10

    Article  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Meth Eng 62(14):2009–2027

    Article  MATH  Google Scholar 

  • Svanberg K (1987) Method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

  • Theocaris PS, Stavroulakis GE (1999) Optimal material design in composites: An iterative approach based on homogenized cells. Comput Method Appl Mech Eng 169(1–2):31–42

    Article  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidisc Optim 41(4):495–505

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Andreassen.

Additional information

This work was funded by the Danish Research Agency through the innovation consortium F⋅MAT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreassen, E., Jensen, J.S. A practical multiscale approach for optimization of structural damping. Struct Multidisc Optim 53, 215–224 (2016). https://doi.org/10.1007/s00158-015-1326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1326-9

Keywords

Navigation