Skip to main content
Log in

Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework

  • EDUCATIONAL ARTICLE
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a flexible framework for parallel and easy-to-implement topology optimization using the Portable and Extendable Toolkit for Scientific Computing (PETSc). The presented framework is based on a standardized, and freely available library and in the published form it solves the minimum compliance problem on structured grids, using standard FEM and filtering techniques. For completeness a parallel implementation of the Method of Moving Asymptotes is included as well. The capabilities are exemplified by minimum compliance and homogenization problems. In both cases the unprecedented fine discretization reveals new design features, providing novel insight. The code can be downloaded from www.topopt.dtu.dk/PETSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. For other operating systems please follow the guidelines on www.mcs.anl.gov/petsc. After PETSc is installed, the compilation of the TopOpt application is done similar to that described in section 2.2.

References

  • Aage N, Lazarov B (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505. doi: 10.1007/s00158-012-0869-2

    Article  MATH  MathSciNet  Google Scholar 

  • Aage N, Poulsen T, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems. Struct Multidiscip Optim 35(2):175–180

    Article  MATH  MathSciNet  Google Scholar 

  • Ahrens J, Geveci B, Law C (2005) ParaView: An End-User Tool for Large Data Visualization. Elsevier

  • Amir O, Aage N, Lazarov B (2014) On multigrid-CG for efficient topology optimization. Struct Multidiscip Optim 49:815-829. doi: 10.1007/s00158-013-1015-5

  • Andreassen E, Lazarov BS, Sigmund O (2014) Design of manufacturable 3d extremal elastic microstructure. Mech Mater 69(1):1–10. doi: 10.1016/j.mechmat.2013.09.018

    Article  Google Scholar 

  • Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2013) PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory

  • Bendsøe M, Sigmund O (2004) Topology Optimization; Theory, methods and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3d using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Meth Engng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Challis V, Roberts A, Grotowski J (2013) High resolution topology optimization using graphics processing units (GPUs). Struct Multidiscip Optim 49:315–325. doi: 10.1007/s00158-013-0980-z

  • Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329–345

    Article  MATH  MathSciNet  Google Scholar 

  • Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  MathSciNet  Google Scholar 

  • Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423. doi: 10.1145/1089014.1089021

    Article  MATH  MathSciNet  Google Scholar 

  • Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9–10):2623–2641

    Article  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86:765–781

  • Lewinski T (2004) Michell structures formed on surfaces of revolution. Struct Multidiscip Optim 28(1):20–30. doi: 10.1007/s00158-004-0419-7

    Article  MathSciNet  Google Scholar 

  • Mahdavi A, Balaji R, Frecker M, Mockensturm EM (2006) Topology optimization of 2D continua for minimum compliance using parallel computing. Struct Multidiscip Optim 32(2):121–132

    Article  Google Scholar 

  • Michell AGM (1904) The limits of economy of materials in frame structures

  • Sasaki M (2007) Morphogenesis of Flux Structure. Architectural Association Publications London

  • Schmidt S, Schulz V (2011) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 14(6):249–256. doi: 10.1007/s00791-012-0180-1

    Article  MathSciNet  Google Scholar 

  • Schroeder W, Martin K (2003) The Visualization Toolkit. 3rd edn. Kitware Inc

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–525

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 25

  • Vemaganti K, Lawrence WE (2005) Parallel methods for optimality criteria-based topology optimization. Comput Methods Appl Mech Eng 194(34–35):3637–3667

    Article  MATH  MathSciNet  Google Scholar 

  • Wadbro E, Berggren M (2009) Megapixel topology optimization on a graphics processing unit. SIAM Rev 51(4):707–721

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) Finite Element Method: Volume 1, 5th edn. Butterworth-Heinemann

Download references

Acknowledgments

The authors acknowledge the support from the Villum foundation through the NextTop project, the Danish Research Agency through the innovation consortium F ∙MAT and the LaScISO project (Grant No. 285782). Fruitful discussions with members of the DTU TopOpt-group are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Aage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aage, N., Andreassen, E. & Lazarov, B.S. Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework. Struct Multidisc Optim 51, 565–572 (2015). https://doi.org/10.1007/s00158-014-1157-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1157-0

Keywords

Navigation