Skip to main content
Log in

A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The paper discusses the filtering of shape sensitivities as a mesh independent regularization method for very large problems of shape optimal design. The vertices of the simulation discretization grids are directly used as design morphing handles allowing for the largest possible design space. Still, however, there has been a lack of theory to consistently merging the sensitivity filtering into the standard optimization technology which is an ongoing topic of discussion in the community. The actual paper tries to overcome this burden. As a result it will be shown that there is a perfect transition between the sensitivity filtering and all the other shape parameterization techniques used for the shape optimization, as there are CAD-based techniques, subdivision surfaces or morphing box technologies. It appears that sensitivity filtering belongs to the most general and powerful control technologies available for shape optimal design. The success will be demonstrated by various illustrative examples which span from basic aspects to sophisticated applications in structural and fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Arnout S, Firl M, Bletzinger KU (2012) Parameter free shape and thickness optimization considering stress response. Struct Multidiscip Optim 45:801–814

    Article  MATH  Google Scholar 

  • Azegami H, Takeuchi K (2006) A smoothing method for shape optimization: traction method using the robin condition. Int J Comput Methods 3(1):21–34

    Article  MATH  MathSciNet  Google Scholar 

  • Bletzinger KU, Kimmich S, Ramm E (1991) Efficient modeling in shape optimal design. Comput Syst Eng 2:483–495

    Article  Google Scholar 

  • Bletzinger KU, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194:3438–3452

    Article  MATH  Google Scholar 

  • Bletzinger KU, Firl M, Daoud F (2008) Approximation of derivatives in semi-analytical structural optimization. Comput Struct 86:1404–1416

    Article  Google Scholar 

  • Bletzinger KU, Firl M, Linhard J, Wüchner R (2010) Optimal shapes of mechanically motivated surfaces. Comput Methods Appl Mech Eng 199:324–333

    Article  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44:247–267

    Article  MATH  Google Scholar 

  • Braibant V, Fleury C (1986) Shape optimal design: a CAD-oriented formulation. Engineering with Computers 1(4):193–204

    Article  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput Aided Des 10:350–355

    Article  Google Scholar 

  • Cho S, Ha SH (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38:53–70

    Article  MATH  MathSciNet  Google Scholar 

  • Clausen P, Pedersen C (2006) Non-parametric large scale structural optimization for industrial applications. In: Proceedings ECCM-2006. Lisbon

  • de Boer A, van der Schoot M, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85:784–795

    Article  Google Scholar 

  • Firl M, Bletzinger KU (2012) Shape optimization of thin walled structures governed by geometrically nonlinear mechanics. Comput Methods Appl Mech Eng 237:107–117

    Article  MathSciNet  Google Scholar 

  • Firl M, Wüchner R, Bletzinger KU (2013) Regularization of shape optimization problems using FE-based parameterization. Struct Multidiscip Optim 47:507–521

    Article  MATH  MathSciNet  Google Scholar 

  • Ha SH, Choi KK, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidiscip Optim 42:417–428

    Article  MATH  Google Scholar 

  • Hojjat M, Stavropoulou E, Bletzinger KU (2014) The vertex morphing method for node-based shape optimization. Comput Methods Appl Mech Eng 268:494–513

    Article  MathSciNet  Google Scholar 

  • Imam MH (1982) Three dimensional shape optimization. Int J Numer Methods Eng 18(1982):661–677

    Article  MATH  Google Scholar 

  • Jameson A (1995) Optimum aerodynamic design using control theory. Comput Fluid Dyn Rev 3:495–528

    Google Scholar 

  • Jameson A (2003) Aerodynamic shape optimization using the adjoint method. Lecture at the Von Karman Institute. Brussels

  • Jameson A, Vassberg JC (2000) Studies of alternative numerical optimization methods applied to the brachistochrone problem. Comput Fluid Dyn 9(3):281–296

    Google Scholar 

  • Kiendl J (2011) Isogeometric analysis and shape optimal design of shell sructures. PhD thesis, Technische Universtität München

  • Kiendl J, Schmidt R, Wüchner R, Bletzinger KU (2013) submitted to Comput Methods Appl Mech Eng

  • Kim NH, Choi KK, Botkin ME (2002) Numerical method for shape optimization using meshfree method. Struct Multidiscip Optim 24:418–429

    Article  Google Scholar 

  • Kobbelt L (1996) A variational approach to subdivision. Comput Aid Geom Des 13:743–761

    Article  MATH  MathSciNet  Google Scholar 

  • Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9):985–996

    Article  MATH  MathSciNet  Google Scholar 

  • Litke N, Levin A, Schröder P (2001) Trimming for subdivision surfaces. Comput Aid Geom Des 18:463–481

    Article  MATH  Google Scholar 

  • Nagy AP (2011) Isogemetric design optimisation. PhD thesis, Technische Universiteit Delft, Delft

  • Mohammadi B, Pironneau O (2004) Shape optimization in fluid mechanics. Annu Rev Fluid Mech 36:255–279

    Article  MathSciNet  Google Scholar 

  • Mohammadi B, Pironneau O (2009) Applied shape optimization for fluids. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Pironneau O (1984) Optimal shape design for elliptic systems. Springer series in computational physics. Springer, Berlin

    Book  Google Scholar 

  • Seo YD, Kim HJ, Youn SK (2010) Shape optimization and its extension to topological design based on isogeometric analysis. Int J Solids Struct 47:1618–1640

    Article  MATH  Google Scholar 

  • Scherer M, Denzer R, Steinmann P (2010) A fictitious energy approach for shape optimization. Int J Numer Methods Eng 82:269–302

    MATH  MathSciNet  Google Scholar 

  • Sigmund O (1994) Design of material structures using topology optimization. Ph.D. Thesis, Technical University of Denmark

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46:471–475

    Article  MATH  MathSciNet  Google Scholar 

  • Schmidt R (2013) Trimming, mapping and optimization in isogeometric analysis of shell structures. PhD thesis, Technische Universtität München.

  • Sokolowski J, Zolésio J-P (1992) Introduction to shape optimization: shape sensitivity analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stavropoulou E, Hojjat M, Bletzinger KU (2013) In-plane mesh regularization for parameter-free shape optimization problems. Submitted to Comput Methods Appl Mech Eng

  • Stück A, Rung T (2011) Adjoint RANS with filtered shape derivatives for hydrodynamic optimisation. Comput Fluids 47(1):22–32

    Article  MATH  MathSciNet  Google Scholar 

  • Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197:2976–2988

    Article  MATH  MathSciNet  Google Scholar 

  • Zorin D, Schröder P, Sweldens W (1996) Interpolating subdivision for meshes with arbitrary topology. In: Computer Graphics (SIGGRAPH ’96 Proceedings). pp 189–192

Download references

Acknowledgments

The author gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG) under various grants as well as the support of the European Commission under THEME SST.2007-RTD-1: Competitive product development, as part of the project FLOWHEAD (Fluid Optimisation Workflows for Highly Effective Automotive Development Processes), from February 2009 to May 2012. Also, the support of Dr. Othmer (Volkswagen), Dr. Harzheim (Opel) as well as ICON shall be gratefully acknowledged,

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Bletzinger.

Additional information

Original version submitted to Structural and Multidisciplinary Optimization, May 10, 2013, Revision 2, submitted, November 10, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bletzinger, KU. A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape. Struct Multidisc Optim 49, 873–895 (2014). https://doi.org/10.1007/s00158-013-1031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-1031-5

Keywords

Navigation