Skip to main content
Log in

Shape optimisation by design of experiments and finite element methods—an application of steel wheels

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The requirements made on industry, and particularly on development departments, are increasing constantly due to demands to reduce costs and development times and the introduction of new quality guidelines (Toutenburg and Gössl, Versuchsplanung in der industrie; moderne methoden und softwarelösungen. Proceedings des workshops versuchsplanung in der industrie der boehringer mannheim GmbH und SAS-Institute, Tutzing 30./31.10.1995. Prentice Hall Verlag, München, 1996). In particular, several loops are usually required within the development process during the development of new parts to obtain an optimal part shape. This process is extensively influenced by the experience and know-how of the developer or design engineer. A method that enables a specific and structured approach to part shape optimisation is presented in this paper. Design of experiments and the finite element method are interlinked in this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barthelemy J-FM, Haftka RT (1993) Approximation concepts for optimum structural design—a review. Struct Optim 5:129–144

    Article  Google Scholar 

  • Bathe K-J (2000) Finite Elemente Methoden. Springer, Berlin

    Google Scholar 

  • Deger Y (2001) Die methode der finiten elemente; Grundlagen und Einsatz in der Praxis. Expert Verlag, Renningen

    Google Scholar 

  • Bhavikatti SS, Ramakrishnan CV (1980) Optimum shape design of rotating disks. Comput Struct 11:397–401

    Article  MATH  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1978) Statistics for experiments. Wiley, New York

    Google Scholar 

  • Dedmon SL, Pilch JM (2001) Design optimization of a freight car wheel. Railroad Conference, 2001. Proceedings of the 2001 IEEE/ASME Joint

  • Ebrahimi ND, Slavin AD (2002) Optimization of flywheels and rotating disks. American Institute of Aeronautics and Astronautics (AIAA-2002-0721)

  • Fröhlich P (2005) FEM-Anwendugspraxis; Einstieg in die Finite Elemente Analyse, zweisprachige Ausgabe Deutsch/Englisch. Vieweg Verlag, Wiesbaden

    Google Scholar 

  • Hastie T, Tibshirani R, Friedmann J (2001) The elements of statistical learning; data mining, inference, and perdiction. Springer series in Statistics, New York

    Google Scholar 

  • Kermelk W (1999) Fahrzeugräder: Aufbau, Konstruktion und Testverfahren. Verlag Moderne Industrie, Landsberg

    Google Scholar 

  • Klein B (1997) Grundlagen und Anwendungen der Finite-Elemente-Methode. Vieweg Verlag, Braunschweig

    Google Scholar 

  • Kleppmann W (2003) Taschenbuch der Versuchsplanung. Carl Hanser Verlag, München

    Google Scholar 

  • Kok S, Stander N (1999) Optimization of a sheet metal forming process using successive multipoint approximations. Struct Optim 18:277–295

    Article  Google Scholar 

  • Krebs R (1996) Optimierung des Tiefziehprozesses mit Methoden der Statistischen Versuchsplanung. Dissertation der Universität Siegen

  • Kuehl RO (2000) Design of experiments: statistical principles of research design and analysis. Duxbury Press, Pacific Grove

    Google Scholar 

  • Lautenschlager U (1999) Robuste Multikriterien-Strukturoptimierung mittels Verfahren der Statistischen Versuchsplanung; Anwendung auf Gestaltoptimierungsprobleme. Dissertation der Universität Siegen. Forschungszentrum für Multidisziplinäre Analysen und Angewandte Strukturoptimierung. FOMAAS, Siegen

  • Markine VL, Shevtsov IY, Esveld C (2007) An inverse shape design method for railway wheel profiles. Struct Multidisc Optim 33:243–253

    Article  Google Scholar 

  • Meske R, Sauter J, Schnack E (2005) Nonparametric gradient-less shape optimization for real-world applications. Struct Multidisc Optim 30:201–218

    Article  MathSciNet  Google Scholar 

  • Meywerk M (2002) Optimization in automotive industry: methods and applications. VDI-Tagung Berechnung und Simulation im Fahrzeugbau vom 01./02.10.2002 in Würzburg

  • Montgomery DC (2000) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  • Müller CH (1997) Robust planning and analysis of experiments. Springer, New York

    MATH  Google Scholar 

  • Müller G, Groth C (1997) FEM für Praktiker: die Methode der Finiten Elemente mit dem FE-Programm ANSYS. Expert Verlag, Renningen

    Google Scholar 

  • Müller R (1978) Statistische Versuchsplanung Grundsätze und praktische Möglichkeiten bei geringem Versuchsaufwand. ZwF 73:51–54

    Google Scholar 

  • Nielsen JCO, Fredö CR (2005) Multi-disciplinary optimization of railway wheels. J Sound Vib 293:510–521

    Article  Google Scholar 

  • Petersen H (1991) Grundlagen der Statistik und der Statistischen Versuchsplanung. Ecomed, Landsberg

    Google Scholar 

  • Redhe M, Nilsson L (2006) A multipoint version of space mapping optimization applied to vehicle crashworthiness design. Struct Multidisc Optim 31:134–146

    Article  Google Scholar 

  • Roux WJ, Stander N, Haftka RT (1998) Response surface approximations for structural optimization. Int J Numer Methods Eng 42:517–534

    Article  MATH  Google Scholar 

  • Shang R, Altenhof W, Hu H, Zheng C, Li N (2006) A post-processor for finite element stress-based fatigue analysis. SAE Int, pp 9-15

  • Schoofs AJG, Klink MBM, van Campen DH (1992) Approximation of structural optimization problems by means of designed numerical experiments. Struct Optim 4:206–212

    Article  Google Scholar 

  • Taguchi G, Wu Y (1985) Introduction to offline quality control. Central Japan Quality Control Assc., Nagaya

    Google Scholar 

  • Toropov VV (1989) Simulation approach to structural optimization. Struct Optim 1:37–46

    Article  Google Scholar 

  • Toropov VV, Filatov AA, Polynkin AA (1993) Multiparameter structural optimization using FEM and multipoint explicit approximations. Struct Optim 6:7–14

    Article  Google Scholar 

  • Toutenburg H (2000) Induktive Statistik. Springer, Berlin

    MATH  Google Scholar 

  • Toutenburg H, Gössl R (1996) Versuchsplanung in der Industrie; Moderne Methoden und Softwarelösungen. Proceedings des Workshops “Versuchsplanung in der Industrie” der Boehringer Mannheim GmbH und SAS-Institute, Tutzing 30./31.10.1995. Prentice Hall Verlag, München

    Google Scholar 

  • Venter G, Haftka RT, Starnes Jr JH (1998) Construction of response surface approximations for design optimization. AIAA J 36(12):2242–2249

    Article  Google Scholar 

  • Weinert M (1994) Sequentielle und parallele Strategien zur optimalen Auslegung komplexer Rotationsschalen. Dissertation der Universität Siegen. Forschungszentrum für Multidisziplinäre Analysen und Angewandte Strukturoptimierung. FOMAAS, Siegen

  • Wittmann H (2000) Design of experiments zur Untersuchung von Ladungswechselberechnungen. In: Berechnungen und Simulationen im Fahrzeugbau. Paper zum 10-ten internationalen Kongress - Berechnung im Fahrzeugbau vom 14./15.09.2000 in Würzburg. Düsseldorf: VDI, pp 597–614

    Google Scholar 

  • Zienkiewicz OC (2005) The finite element method. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, C., Finke, E. Shape optimisation by design of experiments and finite element methods—an application of steel wheels. Struct Multidisc Optim 36, 477–491 (2008). https://doi.org/10.1007/s00158-007-0183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0183-6

Keywords

Navigation