Skip to main content
Log in

Biomechanik des hinteren Kreuzbandes und der hinteren Instabilität

Biomechanics of the posterior cruciate ligament and posterior instability

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Das hintere Kreuzband (HKB) ist der primäre Stabilisator gegen die posteriore tibiale Translation. Die Faserbündel des HKB verhalten sich nicht isometrisch. Das kräftige anterolaterale (AL-)Bündel ist in 90° Beugung gespannt; das dünnere posteromediale (PM-)Bündel kommt in maximaler Streckung und maximaler Beugung unter Spannung. Als funktioneller Agonist zum HKB gilt der M. quadriceps; die ischiokruralen Muskeln wirken antagonistisch, indem sie die Tibia in Beugung in die hintere Schublade ziehen. Das hintere Kreuzband wirkt synergistisch zu den posterolateralen und -medialen Strukturen. In der posterolateralen Gelenkecke sichert das laterale Seitenband das Kniegelenk v. a. gegen das varische Aufklappen. Der M. popliteus ist als aktiver Innenrotator an der Rotationssicherung beteiligt. Der wichtigste passive Stabilisator gegen die Außenrotation ist das Lig. popliteofibulare. Da sich die Spannung des Bandes isometrisch verhält, kann es das Gelenk in verschiedenen Stellungen gegen die Außenrotation sichern. Die durch die posterolaterale Insuffizienz verursachte fehlende laterale Stabilisierung in der Frontalebene führt selbst bei gerader Beinachse unter Belastung zu einer funktionellen Varusfehlstellung der Gelenkpartner, die als Erklärung für die hohe Inzidenz degenerativer Schäden im medialen Kompartiment dienen kann. Auch die posteromediale Gelenkecke leistet einen wichtigen Beitrag zur Verhinderung der posterioren tibialen Translation.

Abstract

The posterior cruciate ligament (PCL) is the primary restraint to posterior tibial translation. The different fibers of the PCL do not act isometrically. Indeed, the anterolateral bundle (AL) is tense in 90° of flexion, whereas the posteromedial bundle (PM) is tense in extension and in deep flexion angles beyond 120° of knee flexion. A functional agonist of the PCL is the quadriceps muscle. The ischiocrural muscles act as antagonists by pulling the tibia backwards in knee flexion. The PCL is supported by the posteromedial and posterolateral extra-articular structures. Posterolaterally, the lateral collateral ligament (LCL) is a restraint to varus forces. The popliteus muscle, in its function as an active internal rotator, supports the rotational stability of the knee. The most important passive stabilizer to external rotation is the popliteofibular ligament. Due to its isometric behavior, this ligament is a restraint to external rotation in different flexion angles. A deficiency of the posterolateral corner leads even in a straight axis to a functional varus deformity of the knee due to the lateral instability. This may be a reason for the high incidence of degenerative changes in the medial compartment. The posteromedial structures are restraints to the posterior tibial translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1 a
Abb. 2
Abb. 3
Abb. 4
Abb. 5 a
Abb. 6
Abb. 7
Abb. 8 a

Literatur

  1. Amis AA (1985) The biomechanics of ligaments. In: Jenkins DHR (ed) Ligament injuries and their treatment. Chapman & Hall, London, pp 3–28

  2. Amis AA, Scammell BE (1993) Biomechanics of intraarticular and extraarticular reconstructions of the anterior cruciate ligament. J Bone Joint Surg [Br] 75: 812–817

    Google Scholar 

  3. Brantigan OC, Voshell AF (1943) The tibial collateral ligament: its function, its bursae, and its relation to the medial meniscus. J Bone Joint Surg [Am] 25: 121–131

    Google Scholar 

  4. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee: a biomechanical study. J Bone Joint Surg [Am] 62: 259–270

    Google Scholar 

  5. Covey DC (2001) Injuries of the posterolateral corner of the knee. J Bone Joint Surg [Am] 83: 106–118

    Google Scholar 

  6. Gollehon DL, Torzilli PA, Warren RF (1987) The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J Bone Joint Surg [Am] 69: 233–242

    Google Scholar 

  7. Grood ES, Noyes FR, Butler DL, Suntay WJ (1981) Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg [Am] 63: 1257–1269

    Google Scholar 

  8. Grood ES, Stowers SF, Noyes FR (1988) Limits of movement in the human knee. Effects of sectioning the posterior cruciate ligament and posterolateral structures. J Bone Joint Surg [Am] 70: 88–97

    Google Scholar 

  9. Gupte CM, Bull AMJ, Thomas RD, Amis AA (2003) A review of the function and biomechanics of the meniscofemoral ligaments. Arthroscopy 19: 161–171

    Google Scholar 

  10. Gupte CM, Smith A, Jamieson N et al. (2002) Meniscofemoral ligaments – structural and material properties. J Biomech 35: 1623–1629

    Article  PubMed  Google Scholar 

  11. Harner CD, Janaushek MA, Kanamori A et al. (2000) Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28: 144–151

    PubMed  Google Scholar 

  12. Harner CD, Hoher J, Vogrin TM et al. (1998) The effects of a popliteus muscle load on in situ forces in the posterior cruciate ligament and on knee kinematics. A human cadaveric study. Am J Sports Med 26(5): 669–673

    PubMed  Google Scholar 

  13. Höher J, Vogrin TM, Woo SL et al. (1999) In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study. J Orthop Res 17(5): 763–768

    Article  PubMed  Google Scholar 

  14. Höher J, Harner CD, Vogrin TM et al. (1998) In situ forces in the posterolateral structures of the knee under posterior tibial loading in the intact and posterior cruciate ligament-deficient knee. J Orthop Res 16(6): 675–681

    Article  PubMed  Google Scholar 

  15. Houe T, Jorgensen U (2004) Arthroscopic posterior cruciate ligament reconstruction. One- vs. two-tunnel techique. Scand J Med Sci Sports 14(2): 107–111

    Article  PubMed  Google Scholar 

  16. Hughston JC, Eilers AF (1994) The role of the posteror oblique ligament in repairs of acute medial (collateral) ligament tears of the knee. J Bone Joint Surg [Am] 76: 1328–1344

    Google Scholar 

  17. Kanamori A. Lee JM, Haemmerle MJ, Vogrin TM, Harner CD (2003) A biomechanical analysis of two reconstructive approaches to the posterolateral corner of the knee. Knee Surg Sports Traumatol Arthrosc 11(5): 312–317

    Article  PubMed  Google Scholar 

  18. Kaneda Y, Moriya H, Takahashi K et al. (1997) Experimental study on external tibial rotation of the knee. Am J Sports Med 25: 796–800

    PubMed  Google Scholar 

  19. Kennedy JC, Fowler PJ (1971) Medial and anterior instability of the knee. J Bone Joint Surg [Am] 53: 1257–1270

    Google Scholar 

  20. Kennedy JC, Hawkins RJ, Willis RB, Danylchuck KD (1976) Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. J Bone Joint Surg [Am] 58: 350–355

    Google Scholar 

  21. Kusayama T, Harner CD, Carlin GJ et al. (1994) Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 2: 234–237

    Article  PubMed  Google Scholar 

  22. Last RJ (1950) The popliteus muscle and the lateral meniscus. J Bone Joint Surg [Br] 32: 93–99

    Google Scholar 

  23. Lenschow S, Zantop T, Weimann A et al. (2005) Joint kinematics and in situ forces after single bundle PCL reconstruction: a graft placed at the center of the femoral attachment does not restore normal posterior laxity. Arch Orthop Trauma Surg 5: 1–7

    Google Scholar 

  24. Lobenhoffer P, Lattermann C, Krettek C et al. (1996) [Rupture of the posterior cruciate ligament: status of current treatment]. Unfallchirurg 99(6): 382–399

    PubMed  Google Scholar 

  25. Mannor DA, Shearn JT, Grood ES et al. (2000) Two-bundle posterior cruciate ligament reconstruction. An in vitro analysis of graft placement and tension. Am J Sports Med 28: 833–845

    PubMed  Google Scholar 

  26. Markolf KL, McAllister DR, Young CR et al. (2003) Biomechanical effects of medial-lateral tibial tunnel placement in posterior cruciate ligament reconstruction. J Orthop Res 21(1): 177–182

    Article  PubMed  Google Scholar 

  27. Maynard MJ, Deng X, Wickiewicz TL, Warren RF (1996) The popliteofibular ligament. Rediscovery of a key element in posterolateral stability. Am J Sports Med 24: 311–316

    PubMed  Google Scholar 

  28. Nielsen S, Kromann-Andersen C, Rasmussen O, Andersen K (1984) Instability of cadaver knees after transection of capsule and ligaments. Acta Orthop Scand 55: 30–34

    PubMed  Google Scholar 

  29. Nielsen S, Helmig P (1986) The static stabilizing function of the popliteal tendon in the knee. An experimental study. Arch Orthop Trauma Surg 104(6): 357–362

    Article  PubMed  Google Scholar 

  30. Niedwitzky P, Weimann A, Herbort M, Zantop T (2005) Gibt es eine nfemoralen „Killer turn“ bei der HKB Rekonstruktion. Vortrag auf dem Jahreskongress der DGOOC und DGO in Berlin

  31. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and rhesus monkeys: age-related and species-related changes. J Bone Joint Surg [Am] 58: 1074–1082

    Google Scholar 

  32. Noyes FR, Stowers SF, Grood ES et al. (1993) Posterior subluxations of the medial and lateral tibiofemoral compartments. An in vitro ligament sectioning study in cadaveric knees. Am J Sports Med. 21(3): 407–414

    Google Scholar 

  33. Ogata K, McCarthy JA, Dunlap J, Manske PR (1988) Pathomechanics of posterior sag of the tibia in posterior cruciate deficient knees. An experimental study. Am J Sports Med 16(6): 630–636

    PubMed  Google Scholar 

  34. Petersen W, Tillmann B (1999) Blood and lymph supply of the posterior cruciate ligament: a cadaver study. Knee Surg Sports Traumatol Arthrosc 7(1): 42–50

    Article  PubMed  Google Scholar 

  35. Petersen W, Lenschow S, Weimann A et al. (2006) Importance of femoral tunnel placement in double-bundle posterior cruciate ligament reconstruction: biomechanical analysis using a robotic/universal force-moment sensor testing system. Am J Sports Med 34(3): 456–463

    PubMed  Google Scholar 

  36. Race A, Amis AA (1994) The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech 27: 13–24

    Article  PubMed  Google Scholar 

  37. Race A, Amis AA (1996) Loading of the two bundles of the posterior cruciate ligament: an analysis of bundle function in A-P drawer. J Biomech 29: 873–879

    Article  PubMed  Google Scholar 

  38. Race A, Amis AA (1998) PCL reconstruction: in vitro biomechanical comparison of „isometric“ versus single and double-bundled „anatomic“ grafts. J Bone Joint Surg [Br] 80: 173–179

    Google Scholar 

  39. Ritchie JR, Bergfeld JA, Kambic H, Manning T (1998) Isolated sectioning of the medial and posteromedial capsular ligaments in the posterior cruciate ligament-deficient knee. Influence on posterior tibial translation. Am J Sports Med 26: 389–394

    PubMed  Google Scholar 

  40. Strobel M, Stedtfeld HW (1990) Diagnostic evaluation of the knee. Springer, Berlin Heidelberg New York

  41. Strobel MJ, Weiler A, Schulz MS et al. (2003) Arthroscopic evaluation of articular cartilage lesions in posterior-cruciate-ligament-deficient knees. Arthroscopy 19(3): 262–268

    PubMed  Google Scholar 

  42. Sugita T, Amis AA (2001) Anatomy and biomechanics of the lateral collateral and popliteofibular ligaments. Am J Sports Med 29: 466–472

    PubMed  Google Scholar 

  43. Ulrich K, Krudwig WK, Witzel U (2002) Posterolateral aspect and stability of the knee joint. I. Anatomy and function of the popliteus muscle-tendon unit: an anatomical and biomechanical study. Knee Surg Sports Traumatol Arthrosc 10: 86–90

    Article  PubMed  Google Scholar 

  44. Veltri DM, Deng XH, Torzilli PA et al. (1995) The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med 23: 436–443

    PubMed  Google Scholar 

  45. Veltri DM, Deng XH, Torzilli PA et al. (1996) The role of the popliteofibular ligament in stability of the human knee. A biomechanical study. Am J Sports Med 24: 19–27

    PubMed  Google Scholar 

  46. Vogrin TM, Hoher J, Aroen A et al. (2000) Effects of sectioning the posterolateral structures on knee kinematics and in situ forces in the posterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 8(2): 93–98

    Article  PubMed  Google Scholar 

  47. Warren LF, Marshall JL, Girgis F (1974) The prime static stabilizer of the medial side of the knee. J Bone Joint Surg [Am] 56: 665–674

    Google Scholar 

  48. Warren LF, Marshall JL (1979) The supporting structures and layers on the medial side of the knee. An anatomical analysis. J Bone Joint Surg [Am] 61: 56–62

    Google Scholar 

  49. Weimann A, Wolfert A, Zantop T, Petersen (2004) „Killer turn“ – Der Zustand des tibialen Bohrkanals beeinflusst die biomechnischen Eigenschaften von HKB Transplantaten. Vortrag auf dem Jahreskongress der DGOOC und DGO in Berlin

  50. Woo SL-Y, Hollis JM, Adams DJ et al. (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med 19: 217–225

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, W., Zantop, T. Biomechanik des hinteren Kreuzbandes und der hinteren Instabilität. Arthroskopie 19, 207–214 (2006). https://doi.org/10.1007/s00142-006-0358-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-006-0358-y

Schlüsselwörter

Keywords

Navigation