Skip to main content
Log in

Tissue-level segmentation and tracking of cells in growing plant roots

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

With the spread of systems approaches to biological research, there is increasing demand for methods and tools capable of extracting quantitative measurements of biological samples from individual and time-based sequences of microscope images. To this end, we have developed a software tool for tissue level segmentation and automatic tracking of a network of cells in confocal images of the roots of the model plant Arabidopsis thaliana. The tool implements a novel hybrid technique, which is a combination of the recently developed Network Snakes technique and MCMC-based particle filters and incorporates automatic initialisation of the network snakes. A novel method of evaluation of network-structured multi-target tracking is also presented, and is used to evaluate the developed tracking framework for accuracy and robustness against several timelapse sequences of Arabidopsis roots. Evaluation results are presented, along with a comparison between the results of the component techniques and the hybrid approach. The results show that the hybrid approach performed consistently well at all levels of complexity and better than the component methods alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smil V.: Phosphorus in the environment: flows and human interfaces. Annu. Rev. Energy Environ. 25, 53–88 (2000)

    Article  Google Scholar 

  2. Cordell D., Drangbert J.O., White S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009)

    Article  Google Scholar 

  3. Zhong, H., Lauchli, A.: Spatial and temporal aspects of growth in the primary root of cotton seedlings: effects of NaCl and CaCl2. J. Exp. Bot. 44(261), 763–771 (1993)

    Google Scholar 

  4. Ishikawa H., Evans M.L.: Induction of curvature in maize roots by calcium or by thigmostimulation. Plant Physiol. 100, 762–768 (1992)

    Article  Google Scholar 

  5. French A.P, Ubeda-Tomas S., Holman T.J., Bennett M.J., Pridmore T.P.P.: High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol. 150, 1784–1795 (2009)

    Article  Google Scholar 

  6. Arsenault J.-L., Pouleur S., Messier C., Guay R.: WinRHIZOTM, a root-measuring system with a unique overlap correction method. HortScience 30, 906 (1995)

    Google Scholar 

  7. Armengaud P. et al.: EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J. 57(5), 945–956 (2008)

    Article  Google Scholar 

  8. Le Bot J., Serra V., Fabre J., Draye X., Adamowicz S., Pagès L.: DART: a software to analyse root system architecture and development from captured images. Plant Soil 326(1), 261–273 (2001)

    Article  Google Scholar 

  9. Miller N.D., Parks B.M., Spalding E.P.: Computer-vision analysis of seedling responses to light and gravity. Plant J. 52(2), 374–381 (2007)

    Article  Google Scholar 

  10. Jaffe M.J., Wakefield A.H., Telewski F., Gulley E., Biro R.: Computer-assisted image analysis of plant growth, thigmomorphogenesis and gravitropism. Plant Physiol. 77, 722–730 (1985)

    Article  Google Scholar 

  11. Péret, B., Larrieu, A., Bennett, M.J.: Lateral root emergence: a difficult birth. J. Exp. Bot. (2009). doi:10.1093/jxb/erp232

  12. Biskup B., Scharr H., Fischbach A., Wiese-Klinkenberg A., Schurr U., Walter A.: Diel growth cycle of isolated leaf discs analyzed with a novel, high-throughput three-dimensional imaging method is identical to that of intact leaves. Plant Physiol. 149, 1452–1461 (2009)

    Article  Google Scholar 

  13. Jansen M., Gilmer F., Biskup B., Nagel K.A., Rascher U., Fischbach A., Briem S., Dreissen G., Tittmann S., Braun S., De Jaeger I., Metzlaff M., Schurr U., Scharr H., Walter A.: Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36(11), 902–991 (2009)

    Article  Google Scholar 

  14. Bylesjö M., Segura V., Soolanayakanahally R.Y., Rae A.M., Trygg J., Gustafsson P., Jansson S., Street N.R.: LAMINA: a tool for rapid quantification of leaf size and shape parameters. BMC Plant Biol. 8, 82 (2008)

    Article  Google Scholar 

  15. Joosen R.V., Kodde J., Willems L.A., Ligterink W., van der Plas L.H., Hilhorst H.W.: Germinator: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 62(1), 148–159 (2010)

    Article  Google Scholar 

  16. Marcuzzo, M., Quelhas, P., Campilho, A., Mendonca, A.M., Campilho, A.: A hybrid approach for Arabidopsis root cell image segmentation. In: ICIAR08. LNCS, vol. 5112, pp. 739–749 (2008)

  17. Dupuy, L., Mackenzie, J., Haseloff, J.: Coordination of plant cell division and expansion in a simple morphogenetic system. Proc Natl Acad Sci USA 107(6), 2711–2716 (2010)

    Google Scholar 

  18. Wang L., Uilecan I.V., Assadi A.H., Kozmik C.A., Spalding E.P.: HypoTrace: image analysis software for measuring hypocotyl growth and shape demonstrated on Arabidopsis seedlings undergoing photomorphogenesis. Plant Physiol. 149(4), 1632–1637 (2009)

    Article  Google Scholar 

  19. McCullough D.P., Gudla P.R., Harris B.S., Collins J.A., Meaburn K.J., Nakaya M.-A., Yamaguchi T.P., Misteli T., Lockett S.J.: Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming. IEEE Trans. Med. Imaging 27(5), 723–734 (2008)

    Article  Google Scholar 

  20. Zimmer C., Labruyere E., Meas-Yedid V., Guillen N., Olivo-Marin J.C.: Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing. IEEE Trans. Med. Imaging 21(10), 1212–1221 (2002)

    Article  Google Scholar 

  21. Bamford P., Lovell B.: Unsupervised cell nucleus segmentation with active contours. Signal Process. 71(2), 203–213 (1998)

    Article  MATH  Google Scholar 

  22. Belien J.A.M., van Ginkel H.A.H.M., Tekola P., Ploeger L.S., Poulin N.M., Baak J.P.A., Van Diest P.J.: Confocal DNA cytometry: a contour-based segmentation algorithm for automated three-dimensional image segmentation. J. Int. Soc. Anal. Cytol. 49(1), 12–21 (2002)

    Google Scholar 

  23. Cohen L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  24. Malpica N., de Solorzano C.O., Vaquero J.J., Santos A., Vallcorba I., Garcia-Sagredo J.M., del Pozo F.: Applying watershed algorithms to the segmentation of clustered nuclei. J. Int. Soc. Anal. Cytol. 28(4), 289–297 (1997)

    Google Scholar 

  25. Lin G., Adiga U., Olson K., Guzowski J.F., Barnes C.A., Roysam B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. J. Int. Soc. Anal. Cytol. 56A(1), 23–36 (2003)

    Google Scholar 

  26. Najman L., Schmitt M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  27. Beucher S.: The watershed transformation applied to image segmentation. Scanning Microsc. 6, 299–314 (1992)

    Google Scholar 

  28. Ray, N., Acton, S.T.: Active contours for cell tracking. In: IEEE Southwest Symposium on Image Analysis and Interpretation, p. 274 (2002)

  29. Leymarie F., Levine M.D.: Tracking deformable objects in the plane using an active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 15(6), 617–634 (1993)

    Article  Google Scholar 

  30. Yilmaz A., Javed O., Shah M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)

    Article  Google Scholar 

  31. Dellaert, F., Burgard, W., Fox, D., Thrun, S.: Using the CONDENSATION algorithm for robust, vision-based mobile robot localization. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 594 (1999)

  32. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: Tracking multiple moving objects with a mobile robot. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1, 371–377 (2001)

  33. Doser, A., Whitford, G.: Particle filter based algorithm for target position estimation under sparce sensor surveillance. In: IEEE Digital Signal Processing Workshop, pp. 482–487 (2006)

  34. Black, A., Jepson, D.: A probabilistic framework for matching temporal trajectories: CONDENSATION-based recognition of gestures and expressions. In: Lecture Notes in Computer Science, Computer Vision, vol. 1406, p. 909 (1998)

  35. Kang H.-G., Kim D.: Real-time multiple people tracking using competitive codensation. Pattern Recognit. 38(7), 1405–1458 (2005)

    Article  Google Scholar 

  36. Smal, I., Niessen, W., Meijering, E.: Particle filtering for multiple object tracking in molecular cell biology. In: IEEE Nonlinear Statistical Signal Processing Workshop, pp. 129–132 (2006)

  37. Roberts, T.J., McKenna, S.J., Hans, J., Valentine, T.A., Bengough, A.G.: Part-based multi-frame registration for estimation of the growth of cellular networks in plant roots. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 2, pp. 378–381 (2006)

  38. van der Weele C.M., Jiang H.S., Palaniappan K.K., Ivanov V.B., Palaniappan K., Baskin T.I.: A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol. 132, 1138–1148 (2003)

    Article  Google Scholar 

  39. Roberts, T.J., McKenna, S.J., Du, C.J., Wuyts, N., Valentine, T.A., Bengough, A.G.: Estimating the motion of plant root cells from in vivo confocal laser scanning microscopy images. Mach. Vis. Appl. (2009). doi:10.1007/s00138-009-0207-x

  40. Roberts, T., McKenna, S., Wuyts, N., Valentine, T., Bengough, A.: Performance of low-level motion estimation methods for confocal microscopy of plant cells in vivo. In: Proceedings of the IEEE Workshop on Motion and Video Computing (February 23–24, 2007), WMVC. IEEE Computer Society, Washington, DC (2007)

  41. Holman T.J., Wilson M.H., Kenobi K., Dryden I.L., Hodgman T.C., Wood A.T.A., Holdsworth M.J.: Statistical evaluation of transcriptomic data generated using the affymetrix one-cycle, two-cycle and IVT-express RNA labelling protocols with the Arabidopsis ATH1 microarray. Plant Methods 6, 9 (2010)

    Article  Google Scholar 

  42. Butenuth, M.: Segmentation of imagery using Network Snakes. In: Proc. Photogrammetric Computer Vision (2006)

  43. Butenuth, M., Heipke, C.: Network Snakes: graph-based object delineation with active contour models. Mach. Vis. Appl. doi:10.1007/s00138-010-0294-8 (2010, in print)

  44. Butenuth, M., Jetzek, F.: Network Snakes for the segmentation of adjacent cells in confocal images. In: Horsch, Deserno, Handels, Meinzer, Tolxdoff (eds.) Bildverarbeitung fr die Medizin 2007, Informatik aktuell, pp. 247–251. Springer (2007)

  45. Kass M., Witkin A., Terzopoulos D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  46. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1805–1918 (2005)

    Google Scholar 

  47. Kolukisaoglu U., Thurow K.: Future and frontiers of automated screening in plant sciences. Plant Sci. 178(6), 476–484 (2010)

    Article  Google Scholar 

  48. Sethuraman, V., Taylor, S., Pridmore, T., French, A., Wells, D.: Segmentation and tracking of confocal images of Arabidopsis thaliana root cells using automatically-initialized Network Snakes. In: International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4 (2009)

  49. Vincent L., Soille P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Matching Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  50. Ziou D., Tabbone S.: Edge detection techniques: an overview. Int. J. Pattern Recognit. Image Anal. 8(4), 537–559 (1998)

    Google Scholar 

  51. Bashir, F., Porikli, F.: Performance evaluation of object detection and tracking systems. Mitsubishi Electric Research Laboratories Report TR2006-041 (2006)

  52. Sidenbladh, H., Wirkander, S.: Tracking random sets of vehicles in terrain. In: 2nd IEEE Workshop on Multi-Object Tracking, Madison (2003)

  53. Sidenbladh, H.: Multi-target particle filtering for the probability hypothesis density. In: 6th International Conference on Information Fusion, pp. 800–806, Cairns, Australia (2003)

  54. Vo, B.N., Sumeetpal, S., Doucet, A.: Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. In: Proceedings of the Sixth International Conference of Information Fusion (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethuraman, V., French, A., Wells, D. et al. Tissue-level segmentation and tracking of cells in growing plant roots. Machine Vision and Applications 23, 639–658 (2012). https://doi.org/10.1007/s00138-011-0329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0329-9

Keywords

Navigation