Skip to main content
Log in

Proposal of a method to analyze 3D deformation/fracture characteristics inside materials based on a stratified matching approach

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In the past, deformation/fracture (D/F) characteristics, defined as load-deformation relationships until the materials are fractured, have been analyzed and evaluated on the surface. The D/F characteristics are affected by more than 10,000 micro-scale internal structures like air bubbles (pores), dispersed particles and cracks in 1 mm3; therefore, it is required to analyze nano-scale D/F characteristics inside materials. In this paper, we propose an analysis method by obtaining displacement vectors of dispersed particles from nano-order 3D-CT images. A problem of matching over 10,000 dispersed particles between deformation is solved by a stratified matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allais L., Bornert M., Bretheau T., Caldemaison D.: Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metall. Mater. 42, 3865–3880 (1994)

    Article  Google Scholar 

  2. Liu Y.L., Fischer G.: In situ measurement of local strain in a metal matrix composite by the object grating technique. Scr. Mater. 36, 1187–1194 (1997)

    Article  Google Scholar 

  3. Deng N., Yamaguchi I.: Automatic analysis of speckle photographs with extended range and improved accuracy. Appl. Opt. 29, 296–303 (1990)

    Google Scholar 

  4. Larsson L., Sjodahl M., Thuvander F.: Microscopic 3-D displacement field measurements using digital speckle photography. Opt. Lasers Eng. 41, 767–777 (2004)

    Article  Google Scholar 

  5. Shabadi R., Kumar S., Roven H.J., Dwarakadasa E.S.: Characterisation of PLC band parameters using laser speckle technique. Mater. Sci. Eng. 364, 140–150 (2004)

    Article  Google Scholar 

  6. Post D.: Moire interferometry: advances and applications. Exp. Mech. 31, 276–280 (1991)

    Article  Google Scholar 

  7. Walker C.A.: A historical review of Moire interferometry. Exp. Mech. 34, 281–299 (1994)

    Article  Google Scholar 

  8. Nicoletto G.: On the visualization of heterogeneous plastic strains by Moire interferometry. Opt. Lasers Eng. 37, 433–442 (2002)

    Article  Google Scholar 

  9. Wert J.A.: Macroscopic crystal rotation patterns in rolled aluminium single crystals. Acta Mater. 50, 3125–3139 (2002)

    Article  Google Scholar 

  10. Nielsen S.F., Poulsen H.F., Beckmann F., Thorning C., Wert J.A.: Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater. 51, 2407–2415 (2003)

    Article  Google Scholar 

  11. Nakazawa, M., Aoki, Y., Kobayashi, M., Toda, H.: 3D image analysis for evaluating internal deformation/fracture characteristics of materials. IEEJ Trans. EIS 127, 824–830 in Japanese (2007)

    Google Scholar 

  12. Otsu N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  13. Rosenfeld A., Hummel R.A., Zucker S.W.: Scene labeling by relaxation operation. IEEE Trans. Syst. Man Cybern. 6, 420–433 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yamamoto, K.: Recognition of handprinted kanji characters by relaxation matching. IEICE Trans. Inf. Syst. J. J65-D(9), 1167–1174 (1982) (in Japanese)

  15. Kanehira, Y., Kaneko, S., Saitoh, S., Maeno, K.: Relaxed multiple template matching for estimating sea surface velocity field. IEICE Trans. Inf. Syst. J. J86-D-2(6), 846–855 (2003) (in Japanese)

    Google Scholar 

  16. Iwata, K., Hongo, H., Yamamoto, K., Niwa, Y.: Facial parts detection by using four directional features and relaxation matching. IEEJ Trans. EIS 124(2), 706–712 (2004) (in Japanese)

    Google Scholar 

  17. Oka, N., Kameyama, K., Toraichi, K.: Optimization of similarity evaluation algorithm using relevance feedback in content-based image retrieval. J. Jpn. Soc. Fuzzy Theory Intell. Inform. 19(5), 524–536 (2007) (in Japanese)

    Google Scholar 

  18. Barber C.B., Dobki D.P., Huhdanpaa H.T.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)

    Article  MATH  Google Scholar 

  19. Pighin F., Hecker J., Lichinski D. et al.: Synthesizing realistic facial expressions from photographs. Proc. SIGGRAPH 98, 75–84 (1998)

    Google Scholar 

  20. Okamoto K., Hassan Y.A., Schmit W.D.: New tracking algorithm for particle image velocimetry. Exp. Fluids 19, 342–347 (1995)

    Article  Google Scholar 

  21. Kobayashi M., Toda H., Kawai Y., Ohgaki T., Uesugi K., Wilkinson D.S., Kobayashi T., Aoki Y., Nakazawa M.: High-density three-dimensional mapping of internal strain by tracking microstructural features. Acta Mater. 56, 2167–2181 (2008)

    Article  Google Scholar 

  22. Miyoshi, T.: Introduction to Finite Element Method (rev. ed.). Baifukan (1994) in Japanese

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Nakazawa.

Additional information

This work was supported by Grant-in-Aid for JSPS Fellows (20-11707).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa, M., Kobayashi, M., Toda, H. et al. Proposal of a method to analyze 3D deformation/fracture characteristics inside materials based on a stratified matching approach. Machine Vision and Applications 21, 687–694 (2010). https://doi.org/10.1007/s00138-009-0242-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-009-0242-7

Keywords

Navigation