Skip to main content
Log in

Using bidimensional regression to assess face similarity

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Face recognition is the identification of humans by the unique characteristics of their faces and forms the basis for many biometric systems. In this research the problem of feature-based face recognition is considered. Bidimensional regression (BDR) is an extension of standard regression to 2D variables. Bidimensional regression can be used to determine the degree of resemblance between two planar configurations of points and for assessing the nature of their geometry. A primary advantage of this approach is that no training is needed. The goal of this research is to explore the suitability of BDR for 2D matching. Specifically, we explore if bidimensional regression can be used as a basis for a similarity measure to compare faces. The approach is tested using standard datasets. The results show that BDR can be effective in recognizing faces and hence can be used as an effective 2D matching technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunelli R., Poggio T.: Face recognition: features versus templates. IEEE Trans. PAMI 15(10), 1042–1062 (1993)

    Google Scholar 

  2. Galton, F.: Personal identification and description —{I}. Nature 38(973), 173–177

  3. Samal A., Iyengar P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recognit. 25(1), 65–67 (1992)

    Article  Google Scholar 

  4. Zhao W., Chellappa R., Rosenfeld A., Phillips P.J.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  5. Oziem, D.J.: Face recognition techniques and the implications of facial transformations. PhD Dissertation, University of Bristol (2002)

  6. Wiskott L., Fellous J.M., Kruger N., Vonder M.C.: Face recognition by elastic bunch graph matching. IEEE Spectr. 19(7), 775–779 (1997)

    Google Scholar 

  7. Duane, M.B.: Face recognition 101—the technology and its applications. http://faculty.darden.virginia.edu/smithr/101.pdf (2001)

  8. Tobler W.: Bidimensional regression. Geogr. Anal. 26, 187–212 (1994)

    Google Scholar 

  9. Alinda F., Bernd K.: Bidimensional regression: assessing the configural similarity and accuracy of cognitive maps and other two-dimensional data sets. Psychol. Methods 8(4), 468–491 (2003)

    Article  Google Scholar 

  10. Tobler, W.: Comparing figures by regression. In: ACM SIGGRAPH Computer Graphics. Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, vol. 12(3) (1978)

  11. Tobler, W.: Durer transforms: a research proposal. http://www.geog.ucsb.edu/~tobler/publications/pdf_docs/inprog/Durer.pdf

  12. Kaya Y., Kobayashi K.: a Basis Study on Human Face Recognition. Academic Press, Orlando (1971)

    Google Scholar 

  13. Bichsel, M.: Strategies of robust object recognition for automatic identification of human faces. Ph.D. thesis, Eidgenossischen, Technischen Hochschule, Zurich (1991)

  14. Craw I., Costen N., Kato T., Akamatsu S.: How should we represent faces for automatic recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 725–736 (1999)

    Article  Google Scholar 

  15. Campadelli, P., Lanzarotti, R., Savazzi, C.: A feature-based face recognition system. In: IEEE Proceedings of International Conference on Image Analysis and Processing, pp. 68–73 (2003)

  16. Lanitis A., Taylor C.J., Cootes T.F.: Automatic face identification system using flexible appearance models. Image Vis. Comput. 13(5), 393–401 (1995)

    Article  Google Scholar 

  17. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. ECCV (1998)

  18. Edwards, G., Cootes, T., Taylor, C.: Face recognition using active appearance models. ECCV (1998)

  19. Penev P.S., Atick J.J.: Local feature analysis: a general statistical theory for object representation. Network Comput. Neural Syst. 7(3), 477–500 (1996)

    Article  MATH  Google Scholar 

  20. Kong S.G., Heo J., Abidi B.R., Paik J., Abidi M.A.: Recent advances in visual and infrared face recognition—a review. Comput. Vis. Image Underst. 97, 103–135 (2005)

    Article  Google Scholar 

  21. Wikott L., Fellous J.-M., Krüger N., Malsburg C.v.d.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)

    Article  Google Scholar 

  22. Chellappa R., Wilson C., Sirohey S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–740 (1995)

    Article  Google Scholar 

  23. Kirby M., Sirvoich L.: Application of the karhunen loeve procedure for the characterization of human faces. Proc. IEEE 12(1), 103–108 (1990)

    Google Scholar 

  24. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

  25. Etemad K., Chellappa R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 1724–1733 (1997)

    Article  Google Scholar 

  26. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components for face recognition. In: Proceedings of the 3rd International Conference on Face and Gesture Recognition, 14–16 April 1998, p. 336 (1998)

  27. Kung S.Y., Taur J.S.: Decision-based neural networks with signal/image classification applications. IEEE Trans. Neural Netw. 6, 170–181 (1995)

    Article  Google Scholar 

  28. Lin S.H., Kung S.Y., Lin L.J.: Face recognition/detection by probabilistic decision-based neural network. IEEE Trans. Neural Netw. 8, 114–132 (1997)

    Article  Google Scholar 

  29. Okada, K., Steffans, J., Maurer, T., Hong, H., Elagin, E., Neven, H., Malsburg, V.v.d. (1998) The Bochum/USC Face Recognition System and how it fared in the FERET Phase III Test. In Face Recognition: From Theory to Applications, Wechsler, H., Phillips, P.J., Bruce, V., Soulie, F.F., Huang, T.S., (eds.) Springer-Verlag, Berlin, Germany, pp. 186–205

  30. Kanade, T.: Picture processing system by computer complex and recognition of human faces. PhD Thesis, Kyoto University (1973)

  31. Goldstein A.J., Harmon L.D., Lesk A.B.: Identification of human faces. Proc. IEEE 59(5), 748–760 (1971)

    Article  Google Scholar 

  32. Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machines: global vesus component-based approach. In: Proceedings, IEEE International Conference on Computer Vision (ICCV2001), pp. 688–694 (2001)

  33. Hsu, R., Jain, A.K.: Face modeling for recognition. In: Proceedings of the IEEE International Conference Image Processing, pp. 693–696 (2001)

  34. Lanzarotti, R., Borghese, N.A., Campadelli, P.: Automatic features detection for overlapping face images on their 3D range models. In: Proceedings of the IEEE International Conference on Image Analysis and Processing, pp. 316–321 (2001)

  35. Smeraldi F., Bigun J.: Retinal vision applied to facial features detection and face authentication. Pattern Recognit. Lett. 23, 463–475 (2002)

    Article  MATH  Google Scholar 

  36. Campadelli, P., Casiraghi, E., Lanzarotti, R.: Detection of facial features. In: Marinaro, M., Tagliaferri, R. (eds.) Thirteenth Italian Workshop on Neural Nets, Lecture Notes in Computer Science, vol. 2486, pp. 124–131 (2002)

  37. Elena, C., Lanzarottiandm, R., Lipori, G.: A face detection system based on color and support vector machines. In: Marinaro, M., Tagliaferri, R. (eds.) Flourteenth Italian Workshop on Neural Nets. Lecture Notes in Computer Science, vol. 2859, pp. 113–120 (2003)

  38. Campadelli, P., Lanzarotti, R., Savazzi, C.: A feature based face recognition system. In: Proceedings of International Conference on Image Analysis and Processing, pp. 68–73 (2003)

  39. Arca, S., Campadelli, P., Lanzarotti, P.: A face recognition system based on local feature analysis. In: International Conference on Audio- and Video-based Biometric Person Authentication. Lecture Notes in Computer Science, vol. 2688, pp. 182–189 (2003)

  40. Zhu Z., Ji Q.: Robust real-time eye detection and tracking under variable lighitng conditions and various face orientations, in the special issue on eye detection and tracking. Comput. Vis. Image Underst. 38(1), 124–154 (2005)

    Article  Google Scholar 

  41. Phillips P.J., Moon H., Rizvi S.A., Rauss P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  42. Farkas L.G.: Anthropometry of the Head and Face. Raven Press, New York (1994)

    Google Scholar 

  43. Shi, J., Samal, A., Marx, D.: Improving face recognition efficiency using landmarks and their geometry. IEEE Trans. PAMI (2004, submitted)

  44. Phillips, P.J., Grother, P.J., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: Face recognition vendor test 2002: evaluation report. http://www.frvt.org (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Samal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kare, S., Samal, A. & Marx, D. Using bidimensional regression to assess face similarity. Machine Vision and Applications 21, 261–274 (2010). https://doi.org/10.1007/s00138-008-0158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0158-7

Keywords

Navigation