Skip to main content
Log in

Less invasive hemodynamic monitoring in critically ill patients

  • Conference Reports and Expert Panel
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Over the last decade, the way to monitor hemodynamics at the bedside has evolved considerably in the intensive care unit as well as in the operating room. The most important evolution has been the declining use of the pulmonary artery catheter along with the growing use of echocardiography and of continuous, real-time, minimally or totally non-invasive hemodynamic monitoring techniques. This article, which is the result of an agreement between authors belonging to the Cardiovascular Dynamics Section of the European Society of Intensive Care Medicine, discusses the advantages and limits of using such techniques with an emphasis on their respective place in the hemodynamic management of critically ill patients with hemodynamic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Connors AF Jr, McCaffree DR, Gray BA (1983) Evaluation of right-heart catheterization in the critically ill patient without acute myocardialinfarction. N Engl J Med 308:263–267

    Article  PubMed  Google Scholar 

  2. Saugel B, Ringmaier S, Holzapfel K, Schuster T, Phillip V, Schmid RM, Huber W (2011) Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care 26:402–410

    Article  PubMed  Google Scholar 

  3. Perel A, Saugel B, Teboul JL, Malbrain ML, Belda FJ, Fernández-Mondéjar E, Kirov M, Wendon J, Lussmann R, Maggiorini M (2015) The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study. J Clin Monit Comput. doi:10.1007/s10877-015-9811-7

  4. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    Article  CAS  PubMed  Google Scholar 

  5. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K (2013) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2:CD003408

    PubMed  Google Scholar 

  6. O’Horo JC, Maki DG, Krupp AE, Safdar N (2014) Arterial catheters as a source of bloodstream infection: a systematic review and meta-analysis. Crit Care Med 42:1334–1339

    Article  PubMed  Google Scholar 

  7. Belda FJ, Aguilar G, Teboul JL, Pestaña D, Redondo FJ, Malbrain M, Luis JC, Ramasco F, Umgelter A, Wendon J, Kirov M, Fernández-Mondéjar E, PICS Investigators Group (2011) Complications related to less-invasive haemodynamic monitoring. Br J Anaesth 106:482–486

    Article  CAS  PubMed  Google Scholar 

  8. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  9. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D, Sepsis Occurrence in Acutely Ill Patients (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353

    Article  PubMed  Google Scholar 

  10. Hadian M, Kim H, Severyn DA, Pinsky MR (2010) Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO FloTrac and pulmonary artery catheters. Crit Care 14:R212

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL (2008) Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 36:434–440

    Article  PubMed  Google Scholar 

  12. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    Article  CAS  PubMed  Google Scholar 

  13. Marik PE, Monnet X, Teboul JL (2011) Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956

    Article  PubMed  Google Scholar 

  15. Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846

    Article  CAS  PubMed  Google Scholar 

  16. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL (2011) Precision of the transpulmonary thermodilution measurements. Crit Care 15:R204

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gödje O, Höke K, Goetz AE, Felbinger TW, Reuter DA, Reichart B, Friedl R, Hannekum A, Pfeiffer UJ (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  PubMed  Google Scholar 

  18. Jozwiak M, Teboul JL, Monnet X (2015) Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care 5:38

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, Malbrain ML (2012) Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care 5:2

    Google Scholar 

  20. Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, Teboul JL, Monnet X (2013) Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 41:472–480

    Article  PubMed  Google Scholar 

  21. Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71:262–266

    Article  CAS  PubMed  Google Scholar 

  22. Cecconi M, Dawson D, Grounds R, Rhodes A (2009) Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med 35:498–504

    Article  CAS  PubMed  Google Scholar 

  23. Slagt C, Malagon I, Groeneveld AB (2014) Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth 112:626–637

    Article  CAS  PubMed  Google Scholar 

  24. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  PubMed  Google Scholar 

  25. Hapfelmeier A, Cecconi M, Saugel B (2016) Cardiac output method comparison studies: the relation of the precision of agreement and the precision of method. J Clin Monit Comput 30:149–155

    Article  PubMed  Google Scholar 

  26. Yang X, Du B (2014) Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care 18:650

    Article  PubMed  PubMed Central  Google Scholar 

  27. Monnet X, Vaquer S, Anguel N, Jozwiak M, Cipriani F, Richard C, Teboul JL (2015) Comparison of pulse contour analysis by Pulsioflex and Vigileo to measure and track changes of cardiac output in critically ill patients. Br J Anaesth 114:235–243

    Article  CAS  PubMed  Google Scholar 

  28. Romano SM, Pistolesi M (2002) Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med 30:1834–1841

    Article  PubMed  Google Scholar 

  29. Franchi F, Silvestri R, Cubattoli L, Taccone FS, Donadello K, Romano SM, Giomarelli P, McBride WT, Scolletta S (2011) Comparison between an uncalibrated pulse contour method and thermodilution technique for cardiac output estimation in septic patients. Br J Anaesth 107:202–208

    Article  CAS  PubMed  Google Scholar 

  30. Gopal S, Do T, Pooni JS, Martinelli G (2014) Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients. Minerva Anestesiol 80:314–323

    CAS  PubMed  Google Scholar 

  31. Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066

    Article  PubMed  Google Scholar 

  32. Monnet X, Chemla D, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2007) Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit Care Med 35:477–482

    Article  PubMed  Google Scholar 

  33. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  34. Marik PE (2013) Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth 27:121–134

    Article  PubMed  Google Scholar 

  35. Saugel B, Cecconi M, Wagner JY, Reuter DA (2015) Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth 114:562–575

    Article  CAS  PubMed  Google Scholar 

  36. Thiele RH, Bartels K, Gan TJ (2015) Cardiac output monitoring: a contemporary assessment and review. Crit Care Med 43:177–185

    Article  PubMed  Google Scholar 

  37. Saugel B, Dueck R, Wagner JY (2014) Measurement of blood pressure. Best Pract Res Clin Anaesthesiol 28:309–322

    Article  PubMed  Google Scholar 

  38. Broch O, Renner J, Gruenewald M, Meybohm P, Schottler J, Caliebe A, Steinfath M, Malbrain M, Bein B (2012) A comparison of the Nexfin(R) and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia 67:377–383

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Meng L, Alexander B, Tran NP, Kain ZN, Cannesson M (2012) Comparison of noninvasive cardiac output measurements using the Nexfin monitoring device and the esophageal Doppler. J Clin Anesth 24:275–283

    Article  PubMed  Google Scholar 

  40. Fischer MO, Avram R, Cârjaliu I, Massetti M, Gérard JL, Hanouz JL, Fellahi JL (2012) Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br J Anaesth 109:514–521

    Article  CAS  PubMed  Google Scholar 

  41. Monnet X, Picard F, Lidzborski E, Mesnil M, Duranteau J, Richard C, Teboul JL (2012) The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care 16:R212

    Article  PubMed  PubMed Central  Google Scholar 

  42. Taton O, Fagnoul D, De Backer D, Vincent JL (2013) Evaluation of cardiac output in intensive care using a non-invasive arterial pulse contour technique (Nexfin((R))) compared with echocardiography. Anaesthesia 68:917–923

    Article  CAS  PubMed  Google Scholar 

  43. Wagner JY, Grond J, Fortin J, Negulescu I, Schofthaler M, Saugel B (2016) Continuous noninvasive cardiac output determination using the CNAP system: evaluation of a cardiac output algorithm for the analysis of volume clamp method-derived pulse contour. J Clin Monit Comput. doi:10.1007/s10877-015-9744-1

  44. Saugel B, Meidert AS, Langwieser N, Wagner JY, Fassio F, Hapfelmeier A, Prechtl LM, Huber W, Schmid RM, Godje O (2014) An autocalibrating algorithm for non-invasive cardiac output determination based on the analysis of an arterial pressure waveform recorded with radial artery applanation tonometry: a proof of concept pilot analysis. J Clin Monit Comput 28:357–362

    Article  PubMed  Google Scholar 

  45. Wagner JY, Sarwari H, Schon G, Kubik M, Kluge S, Reichenspurner H, Reuter DA, Saugel B (2015) Radial artery applanation tonometry for continuous noninvasive cardiac output measurement: a comparison with intermittent pulmonary artery thermodilution in patients after cardiothoracic surgery. Crit Care Med 43:1423–1428

    Article  PubMed  Google Scholar 

  46. Saugel B, Reuter DA (2014) Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth 113:340–343

    Article  CAS  PubMed  Google Scholar 

  47. Hofer CK, Rex S, Ganter MT (2014) Update on minimally invasive hemodynamic monitoring in thoracic anesthesia. Curr Opin Anaesthesiol 27:28–35

    Article  CAS  PubMed  Google Scholar 

  48. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C (2007) Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med 33:1191–1194

    Article  PubMed  Google Scholar 

  49. Kupersztych-Hagege E, Teboul JL, Artigas A, Talbot A, Sabatier C, Richard C, Monnet X (2014) Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br J Anaesth 111:961–966

    Article  Google Scholar 

  50. Fagnoul D, Vincent JL, de Backer D (2012) Cardiac output measurements using the bioreactance technique in critically ill patients. Crit Care 16:460

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamada T, Tsutsui M, Sugo Y, Sato T, Akazawa T, Sato N, Yamashita K, Ishihara H, Takeda J (2012) Multicenter study verifying a method of noninvasive continuous cardiac output measurement using pulse wave transit time: a comparison with intermittent bolus thermodilution cardiac output. Anesth Analg 115:82–87

    Article  PubMed  Google Scholar 

  52. Ball TR, Tricinella AP, Kimbrough BA, Luna S, Gloyna DF, Villamaria FJ, Culp WC Jr (2013) Accuracy of noninvasive estimated continuous cardiac output (esCCO) compared to thermodilution cardiac output: a pilot study in cardiac patients. J Cardiothorac Vasc Anesth 27:1128–1132

    Article  PubMed  Google Scholar 

  53. Biais M, Berthezene R, Petit L, Cottenceau V, Sztark F (2015) Ability of esCCO to track changes in cardiac output. Br J Anaesth 115:403–410

    Article  CAS  PubMed  Google Scholar 

  54. Thonnerieux M, Alexander B, Binet C, Obadia JF, Bastien O, Desebbe O (2015) The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method. Anesth Analg 121:383–391

    Article  PubMed  Google Scholar 

  55. Biais M, Cottenceau V, Petit L, Masson F, Cochard JF, Sztark F (2011) Impact of norepinephrine on the relationship between pleth variability index and pulse pressure variations in ICU adult patients. Crit Care 15:R168

    Article  PubMed  PubMed Central  Google Scholar 

  56. Monnet X, Guérin L, Jozwiak M, Bataille A, Julien F, Richard C, Teboul JL (2013) Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth 110:207–213

    Article  CAS  PubMed  Google Scholar 

  57. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101:200–206

    Article  CAS  PubMed  Google Scholar 

  58. Forget P, Lois F, de Kock M (2010) Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg 111:910–914

    PubMed  Google Scholar 

  59. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1785–1815

    Article  Google Scholar 

  60. Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781

    Article  PubMed  Google Scholar 

  61. Marik PE (2014) Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eskesen TG, Wetterslev M, Perner A (2016) Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 42:324–332

    Article  CAS  PubMed  Google Scholar 

  63. Pinsky MR, Kellum JA, Bellomo R (2014) Central venous pressure is a stopping rule, not a target of fluid resuscitation. Crit Care Resus 16:245–246

    Google Scholar 

  64. Wong BT, Chan MJ, Glassford NJ, Mårtensson J, Bion V, Chai SY, Oughton C, Tsuji IY, Candal CL, Bellomo R (2015) Mean arterial pressure and mean perfusion pressure deficit in septic acute kidney injury. J Crit Care 30:975–981

    Article  PubMed  Google Scholar 

  65. Squara P (2014) Central venous oxygenation: when physiology explains apparent discrepancies. Crit Care 18:579

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wetterslev M, Møller-Sørensen H, Johansen RR, Perner A (2016) Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. doi:10.1007/s00134-016-4258-y

  67. Jozwiak M, Monnet X, Teboul JL (2015) Monitoring: from cardiac output monitoring to echocardiography. Curr Opin Crit Care 21:395–401

    Article  PubMed  Google Scholar 

  68. Trof RJ, Beishuizen A, Cornet AD, de Wit RJ, Girbes AR, Groeneveld AB (2012) Volume-limited versus pressure-limited hemodynamic management in septic and nonseptic shock. Crit Care Med 40:1177–1185

    Article  PubMed  Google Scholar 

  69. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    Article  CAS  PubMed  Google Scholar 

  70. Teboul JL, Monnet X, Perel A (2012) Results of questionable management protocols are inherently questionable. Crit Care Med 40:2536

    Article  PubMed  Google Scholar 

  71. Vincent JL, Pelosi P, Pearse R, Payen D, Perel A, Hoeft A, Romagnoli S, Ranieri VM, Ichai C, Forget P, Della Rocca G, Rhodes A (2015) Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care 19:224

    Article  PubMed  PubMed Central  Google Scholar 

  72. Scheeren TW, Wiesenack C, Gerlach H, Marx G (2013) Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput 27:225–233

    Article  PubMed  Google Scholar 

  73. Benes J, Giglio M, Brienza N, Michard F (2014) The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care 18:584

    Article  PubMed  PubMed Central  Google Scholar 

  74. Michard F (2016) Hemodynamic monitoring in the era of digital health. Ann Intensive Care 6:15

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maisch S, Bohm SH, Solà J, Goepfert MS, Kubitz JC, Richter HP, Ridder J, Goetz AE, Reuter DA (2011) Heart-lung interactions measured by electrical impedance tomography. Crit Care Med 39:2173–2176

    Article  PubMed  Google Scholar 

  76. Biais M, Carrié C, Delaunay F, Morel N, Revel P, Janvier G (2012) Evaluation of a new echoscopic device for focused cardiac ultrasonography in an emergency setting. Crit Care 16:R82

    Article  PubMed  PubMed Central  Google Scholar 

  77. Drews FA, Westenskow DR (2006) The right picture is worth a thousand numbers: data displays in anesthesia. Hum Factors 48(1):59–71

    Article  PubMed  Google Scholar 

  78. Pinsky MR, Dubrawski A (2014) Gleaning knowledge from data in the ICU. Am J Respir Crit Care Med 190:606–610

    Article  PubMed  PubMed Central  Google Scholar 

  79. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, Vincent JL (2013) Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 41:791–799

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Teboul.

Ethics declarations

Conflicts of interest

JLT is a member of the medical advisory board of Pulsion Medical Systems and received honoraria from Edwards Lifesciences and Masimo Inc. for consulting. BS is a member of the medical advisory board of Pulsion Medical Systems and a received institutional research grants, unrestricted research grants, and refunds of travel expenses from Tensys Medical Inc. BS received honoraria for giving lectures for CNSystems Medizintechnik AG. MC consulted and lectured for Edwards Lifesciences and LiDCO. He received support from Edwards Lifesciences, LiDCO, Deltex Medical, Applied Physiology, Masimo, Bmeye, Cheetah Medical, Imacor (travel expenses, honoraria, advisory board, unrestricted educational grant, and research material). DDB received honoraria for lectures for Edwards Lifesciences and Nihon Kohden. DDB received grant/material for studies for Edwards Lifesciences, Maquet, Vytech, Cheetah, Imacor, and Nihon Kohden. XM is a member of the medical advisory board of Pulsion Medical systems and received honoraria from Cheetah Medical for consulting. AP is a member of the medical advisory board of Pulsion Medical Systems and is a consultant for Masimo Inc. MRP is a consultant for Edwards Lifesciences, Masimo Inc., and LiDCO and has stock options in LiDCO and Cheetah Medical companies. DAR is a member of the medical advisory board of Pulsion Medical Systems and gave lectures for Edwards Lifesciences. AR has no conflict of interest to declare. PS was a consultant for Cheetah Medical and for Edwards Lifesciences. TS received honoraria from Edwards Lifesciences and Masimo Inc. for consulting. TS received honoraria from Pulsion Medical Systems for lecturing. JLV has no conflict of interest to declare.

Additional information

On behalf of the Cardiovascular Dynamics Section of the European Society of Intensive Care Medicine (ESICM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teboul, JL., Saugel, B., Cecconi, M. et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 42, 1350–1359 (2016). https://doi.org/10.1007/s00134-016-4375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-016-4375-7

Keywords

Navigation