Skip to main content
Log in

Knorpelreparative Eingriffe am oberen Sprunggelenk

Therapieoptionen, Ergebnisse und technische Aspekte

Ankle cartilage repair

Therapeutic options, results and technical aspects

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Behandlungsstrategien für Gelenkflächenläsionen des oberen Sprunggelenks sind vielfältig. Die Verwendung von biologischen Trägermaterialien sowie von biologischen Agenzien hat in letzter Zeit neuartige zellbasierte Therapieverfahren in den Fokus gerückt.

Ziel dieser Arbeit

Im Rahmen dieser Arbeit sollen knorpelreparative Verfahren am Sprunggelenk vorgestellt und anhand der aktuellen Studienlage bewertet werden. Ergänzend werden für jedes Verfahren technische Hinweise („Tipps“) aufgeführt.

Material und Methoden

Aktuell stehen am Sprunggelenk hauptsächlich folgende etablierte operative Verfahren zur Verfügung: die Mikrofrakturierung, die AMIC (autologe matrixinduzierte Chondrogenese), die OCT (osteochondrale Transplantation/Mosaiktechnik) und die Allografttransplantation.

Diskussion

Der Erfolg jedes Verfahrens ist von der geeigneten Indikation, der Therapie möglicher Begleitpathologien wie Beinachsabweichungen oder ligamentäre Instabilitäten, der Erfahrung des Operateurs und einer adäquaten Nachbehandlung abhängig. Mittel- bis langfristig können gute bis exzellente Ergebnisse erzielt werden. Die besten klinischen Resultate zeigen studienübergreifend isolierte Knorpelschäden ohne Begleitverletzungen bei Patienten jünger als 40 Jahre und Nichtrauchern mit normalem BMI bei frühzeitiger Therapie. Neuartige zellbasierte Therapien verwenden Trägermaterialien und biologische Agenzien. Sie bieten vielversprechende Perspektiven bei allerdings noch unsicherer Datenlage.

Abstract

Background

Therapeutic strategies for cartilage repair of the talus are varied. With the use of biologic scaffolds and biologic agents new cell-based therapies have become the focus of attention.

Objectives

Ankle cartilage repair techniques are presented and assessed by current data. In addition, technical notes for each technique are given.

Material and methods

Currently, the following established ankle cartilage repair procedures exist: microfracturing, AMIC (autologous matrix-induced chondrogenesis), OCT (osteochondral transplantation, mosaicplasty), allograft transplantation.

Discussion

The success of each repair technique is dependent on the proper indication, addressing of co-morbidities like axis deviation or ligament instabilities, the experience of the surgeon and the appropriate rehabilitation. Mid- and long-term results are often good or excellent. Best results are seen in isolated cartilage defects without co-morbidities in patients younger than 40 years of age and non-smokers with normal BMI and early intervention. New cell-based therapies utilize scaffolds and biologic agents. They offer promising perspectives, although current data is inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

ACT:

Autologe matrixassoziierte Chondrozytentransplantation

AMIC:

Autologe matrixinduzierte Chondrogenese

AOFAS:

American Orthopaedic Foot & Ankle Society

BMAC:

Knochenmarkskonzentrat

DGOU:

Deutsche Gesellschaft für Orthopädie und Unfallchirurgie

ICRS:

International Cartilage Repair Society

KMS:

Knochenmarkstimulation

MSC:

Mesenchymale Stammzellen

OCT:

Osteochondrale Transplantation

OSG:

Oberes Sprunggelenk

PRP:

„Platelet-rich plasma“

Literatur

  1. Millington SA, Grabner M, Wozelka R, Anderson DD, Hurwitz SR, Crandall JR (2007) Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system. Osteoarthr Cartil 15:205–211. https://doi.org/10.1016/j.joca.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  2. Eger W, Aurich M, Schumacher BL, Mollenhauer J, Kuettner KE, Cole AA (2003) Unterschiede im Metabolismus von Chondrozyten des Knie- und Sprunggelenks. Z Orthop Ihre Grenzgeb 141:18–20

    PubMed  Google Scholar 

  3. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85:58–69

    Article  PubMed  Google Scholar 

  4. Leumann A, Valderrabano V, Plaass C et al (2011) A novel imaging method for osteochondral lesions of the talus-comparison of SPECT-CT with MRI. Am J Sports Med 39:1095–1101

    Article  PubMed  Google Scholar 

  5. Elias I, Jung JW, Raikin SM, Schweitzer MW, Carrino JA, Morrison WB (2006) Osteochondral lesions of the talus: change in MRI findings over time in talar lesions without operative intervention and implications for staging systems. Foot Ankle Int 27(3):157–166

    Article  PubMed  Google Scholar 

  6. Thomas M, Jordan M, Hamborg-Petersen E (2016) Arthroscopic treatment of chondral lesions of the ankle joint. Evidence-based therapy. Unfallchirurg 119(2):100–108. https://doi.org/10.1007/s00113-015-0136-2

    Article  CAS  PubMed  Google Scholar 

  7. Steadman JR et al (1999) Die Technik der Mikrofrakturierung zur Behandlung von kompletten Knorpeldefekten im Kniegelenk. Orthopäde 28:26–32

    CAS  PubMed  Google Scholar 

  8. Becher C, Driessen A, Hess T, Longo UG, Maffulli N, Thermann H (2010) Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up. Knee Surg Sports Traumatol Arthrosc 18(5):656–663. https://doi.org/10.1007/s00167-009-1036-1

    Article  PubMed  Google Scholar 

  9. Choi WJ, Park KK, Kim BS, Lee JW (2009) Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med 37(10):1974–1980. https://doi.org/10.1177/0363546509335765

    Article  PubMed  Google Scholar 

  10. Ferkel RD, Zanotti RM et al (2008) Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med 36(9):1750–1762

    Article  PubMed  Google Scholar 

  11. Behrens P, Varoga D, Niemeyer P, Salzmann G (2013) Intraoperative biologische Augmentation am Knorpel. Arthroskopie 26:114–122

    Article  Google Scholar 

  12. Doral M, Bilge O, Batmaz G et al (2012) Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc 20(7):1398–1403. https://doi.org/10.1007/s00167-011-1856-7

    Article  CAS  PubMed  Google Scholar 

  13. Guney A, Akar M, Karaman I, Oner M, Guney B (2015) Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 23(8):2384–2389. https://doi.org/10.1007/s00167-013-2784-5

    Article  PubMed  Google Scholar 

  14. Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN (2000) Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int 21:119–126

    Article  CAS  PubMed  Google Scholar 

  15. Richter M, Zech S (2008) 3D imaging (ARCADIS)-based Computer Assisted Surgery (CAS) guided retrograde drilling in osteochondritis dissecans of the talus. Foot Ankle Int 29(12):1243–1248

    Article  PubMed  Google Scholar 

  16. Richter M, Zech S (2011) Navigated retrograde drilling in Osteochondrosis dissecans (OCD) of the talus. Oper Orthop Traumatol 23(5):473–482. https://doi.org/10.1007/s00064-010-9005-x

    Article  CAS  PubMed  Google Scholar 

  17. Anders S, Lechler P, Rackl W, Grifka J, Schaumburger J (2012) Fluoroscopy-guided retrograde core drilling and cancellous bone grafting in osteochondral defects of the talus. Int Orthop 36(8):1635–1640

    Article  PubMed  PubMed Central  Google Scholar 

  18. Behrens P (2005) Matrixgekoppelte Mikrofrakturierung. Arthroskopie 18:193–197

    Article  Google Scholar 

  19. Eshed I, Trattnig S, Sharon M, Arbel R, Nierenberg G, Konen E, Yayon A (2012) Assessment of cartilage repair after chondrocyte transplantation with a fibrinhyaluronan matrix-correlation of morphological MRI, biochemical T2 mapping and clinical outcome. Eur J Radiol 81(6):1216–1223. https://doi.org/10.1016/j.ejrad.2011.03.031

    Article  PubMed  Google Scholar 

  20. Vilá y Rico J, Dalmau A, Chaqués FJ, Asunción J (2015) Treatment of Osteochondral Lesions of the Talus with Bone Marrow Stimulation and Chitosan-Glycerol Phosphate/Blood Implants (BST-CarGel). Arthrosc Tech 4(6):e663–7. https://doi.org/10.1016/j.eats.2015.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kubosch EJ, Erdle B, Izadpanah K, Kubosch D, Uhl M, Südkamp NP, Niemeyer P (2016) Clinical outcome and T2 assessment following autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Int Orthop 40(1):65–71. https://doi.org/10.1007/s00264-015-2988-z

    Article  PubMed  Google Scholar 

  22. Valderrabano V, Miska M, Leumann A, Wiewiorski M (2013) Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med 41(3):519–527. https://doi.org/10.1177/0363546513476671

    Article  PubMed  Google Scholar 

  23. Benthien JP, Behrens P (2015) Nanofractured autologous matrix induced chondrogenesis (NAMIC©)-Further development of collagen membrane aided chondrogenesis combined with subchondral needling: a technical note. Knee 22(5):411–415. https://doi.org/10.1016/j.knee.2015.06.010

    Article  PubMed  Google Scholar 

  24. Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G (2009) Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med 37(Suppl 1):105S–111S. https://doi.org/10.1177/0363546509351481

    Article  Google Scholar 

  25. Scranton PE Jr, Frey CC, Feder KS (2006) Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg Br 88(5):614–619

    Article  PubMed  Google Scholar 

  26. Hangody L, Ráthonyi GK, Duska Z, Vásárhelyi G, Füles P, Módis L (2004) Autologous osteochondral mosaicplasty: surgical technique. J Bone Joint Surg Am 86(Suppl 1):65–72

    Article  PubMed  Google Scholar 

  27. Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E (2007) The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med 35(1):80–85

    Article  PubMed  Google Scholar 

  28. Imhoff AB, Paul J, Ottinger B, Wörtler K, Lämmle L, Spang J, Hinterwimmer S (2011) Osteochondral transplantation of the talus: long-term clinical and magnetic resonance imaging evaluation. Am J Sports Med 39(7):1487–1493

    Article  PubMed  Google Scholar 

  29. Baltzer AW, Arnold JP (2005) Bone-cartilage transplantation from the ipsilateral knee for chondral lesions of the talus. Arthroscopy 21(2):159–166

    Article  PubMed  Google Scholar 

  30. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G (2006) Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy 22(10):1085–1092

    Article  PubMed  Google Scholar 

  31. Kreuz PC, Steinwachs M, Erggelet C, Lahm A, Henle P, Niemeyer P (2006) Mosaicplasty with autogenous talar autograft for osteochondral lesions of the talus after failed primary arthroscopic management: a prospective study with a 4-year follow-up. Am J Sports Med 34(1):55–63

    Article  PubMed  Google Scholar 

  32. Aurich M, Albrecht D, Angele P, Becher C, Fickert S, Fritz J, Müller PE, Niemeyer P, Pietschmann M, Spahn G, Walther M (2017) Treatment of Osteochondral Lesions in the Ankle: A Guideline from the Group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Traumatology (DGOU). Z Orthop Unfall 155(1):92–99. https://doi.org/10.1055/s-0042-116330

    CAS  PubMed  Google Scholar 

  33. Schachar NS, McGann LE (1986) Investigations of low-temperature storage of articular cartilage for transplantation. Clin Orthop Relat Res 208:146–150

    Google Scholar 

  34. Tomford WW, Duff GP, Mankin HJ (1985) Experimental freeze-preservation of chondrocytes. Clin Orthop Relat Res (197):11–14

    Google Scholar 

  35. Hannon CP, Smyth NA, Murawski CD, Savage-Elliott I, Deyer TW, Calder JD, Kennedy JG (2014) Osteochondral lesions of the talus: aspects of current management. Bone Joint J 96-B(2):164–171. https://doi.org/10.1302/0301-620X.96B2.31637

    Article  CAS  PubMed  Google Scholar 

  36. El-Rashidy H, Villacis D, Omar I, Kelikian AS (2011) Fresh osteochondral allograft for the treatment of cartilage defects of the talus: a retrospective review. J Bone Joint Surg Am 93(17):1634–1640. https://doi.org/10.2106/JBJS.J.00900

    Article  PubMed  Google Scholar 

  37. Vannini F, Cavallo M, Baldassarri M, Castagnini F, Olivieri A, Ferranti E et al (2014) Treatment of juvenile osteochondritis dissecans of the talus: current concepts review. Joints 2(4):188–191

    PubMed  Google Scholar 

  38. Baums MH, Schultz W, Kostuj T, Klinger HM (2014) Cartilage repair techniques of the talus: An update. World J Orthop 5(3):171–179. https://doi.org/10.5312/wjo.v5.i3.171

    Article  PubMed  PubMed Central  Google Scholar 

  39. Görmeli G, Karakaplan M, Görmeli CA, Sarıkaya B, Elmalı N, Ersoy Y (2015) Clinical Effects of Platelet-Rich Plasma and Hyaluronic Acid as an Additional Therapy for Talar Osteochondral Lesions Treated with Microfracture Surgery: A Prospective Randomized Clinical Trial. Foot Ankle Int 36(8):891–900. https://doi.org/10.1177/1071100715578435

    Article  PubMed  Google Scholar 

  40. Mei-Dan O, Carmont MR, Laver L et al (2012) Platelet-rich plasma or hyaluronate in the mangement of osteochondral lesions of the talus. Am J Sports Med 40(3):534–541

    Article  PubMed  Google Scholar 

  41. van Bergen CJ, van Eekeren IC, Reilingh ML, Sierevelt IN, van Dijk CN (2013) Treatment of osteochondral defects of the talus with a metal resurfacing inlay implant after failed previous surgery: a prospective study. Bone Joint J 95-B(12):1650–1655. https://doi.org/10.1302/0301-620X.95B12.32455

    Article  PubMed  Google Scholar 

  42. Mandelbaum BR, Gerhardt MB, Peterson L (2003) Autologous chondrocyte implantation of the talus. Arthroscopy 19(Suppl. 1):S129–S137

    Article  Google Scholar 

  43. Niemeyer P, Salzmann G, Feucht M, Pestka J, Porichis S, Ogon P, Südkamp N, Schmal H (2014) First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: a matched-pair analysis on long-term clinical outcome. Int Orthop 38(10):2065–2070. https://doi.org/10.1007/s00264-014-2368-0

    Article  PubMed  Google Scholar 

  44. Anders S, Goetz J, Schubert T, Grifka J, Schaumburger J (2012) Treatment of deep articular talus lesions by matrix associated autologous chondocyte implantation – results at five years. Int Orthop 36(11):2279–2285. https://doi.org/10.1007/s00264-012-1635-1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Magnan B, Samaila E, Bondi M, Vecchini E, Micheloni GM, Bartolozzi P (2012) Three-dimensional matrix-induced autologous chondrocytes implantation for osteochondral lesions of the talus: midterm results. Adv Orthop. https://doi.org/10.1155/2012/942174

    PubMed  PubMed Central  Google Scholar 

  46. Kruse DL, Ng A, Paden M, Stone PA (2012) Arthroscopic De Novo NT(®) juvenile allograft cartilage implantation in the talus: a case presentation. J Foot Ankle Surg 51(2):218–221. https://doi.org/10.1053/j.jfas.2011.10.027

    Article  PubMed  Google Scholar 

  47. Coetzee JC, Giza E, Schon LC, Berlet GC, Neufeld S, Stone RM, Wilson EL (2013) Treatment of osteochondral lesions of the talus with particulated juvenile cartilage. Foot Ankle Int 34(9):1205–1211. https://doi.org/10.1177/1071100713485739

    Article  PubMed  Google Scholar 

  48. Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18(2):238–246. https://doi.org/10.1007/s00167-009-0942-6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anders.

Ethics declarations

Interessenkonflikt

S. Anders, J. Götz, J. Grifka und C. Baier geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anders, S., Götz, J., Grifka, J. et al. Knorpelreparative Eingriffe am oberen Sprunggelenk. Orthopäde 46, 938–946 (2017). https://doi.org/10.1007/s00132-017-3470-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-017-3470-y

Schlüsselwörter

Keywords

Navigation