Skip to main content
Log in

Patientenspezifische Instrumente und Implantate beim Teilgelenkersatz des Kniegelenkes (ConforMIS iUni, iDuo)

Partial replacement of the knee joint with patient-specific instruments and implants (ConforMIS iUni, iDuo)

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Knieendoprothetik ist eine erfolgreiche Standardoperation in der orthopädischen Chirurgie. Etwa 20 % der Patienten sind jedoch mit dem klinischen Ergebnis unzufrieden. Sie haben Schmerzen und erreichen nicht mehr die Aktivität wie vor der Operation. In der Literatur werden als Ursachen u. a. eine ungenaue Passform der Prothesen oder zu wenig anatomisch geformte Implantate und damit verbunden eine zu wenig physiologische Kinematik der Kniegelenke angegeben. Die Reduktion der Anzahl an unzufriedenen Patienten und die Vermeidung der damit verbundenen Revisionen sind ein wichtiges Ziel angesichts des weiter steigenden Bedarfs an künstlichen Kniegelenken. Individuell für den Patienten angefertigte Kniegelenke stellen hier eine äußerst interessante und nahe liegende Alternative zu den herkömmlichen Standardimplantaten dar. Dabei wird erstmalig die Prothese an den individuellen Knochen angepasst, wodurch die ursprüngliche Situation dieser Gelenke bestmöglich wieder hergestellt wird und dabei mehr Strukturen (Knochen, Bänder) erhalten bleiben, bzw. nur das ersetzt wird, was auch tatsächlich durch die Arthrose zerstört wurde. Sie stellen nach Autorenmeinung damit eine optimale und zukunftsweisende Ergänzung zu den bisherigen Implantaten dar. Basierend auf CT-Daten werden über eine virtuelle 3D-Rekonstruktion und dann im 3D-Druckverfahren sowohl patientenindividuelle Prothesen als auch die zur Implantation und exakten Ausrichtung notwendigen Instrumente hergestellt. Das Portfolio umfasst mediale wie laterale unikondyläre sowie mediale und laterale bikompartimentelle Prothesen (ein femorotibiales und femoropatellares Kompartiment) sowie kreuzbanderhaltende und kreuzbandsubstituierende totalendoprothetische Versorgung. Allerdings muss explizit betont werden, dass die bisherigen Literaturberichte spärlich sind und keine Langzeiterfahrungen vorliegen.

Abstract

Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM (2012) Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br 94(11):95–99 (Suppl A) doi:10.1302/0301-620X.94B11.30834

    Article  CAS  PubMed  Google Scholar 

  2. Beckmann J, Calgeer P, Rueth M, Huth J, Schnurr C, Beier A (2015) ikompartimenteller vs. totalendoprothetischer Ersatz der Bikompartiment-Gonarthrose – ein matched-pair Vergleich. Paper presented at the 63. Jahreskongress der Vereinigung Süddeutscher Orthopäden und Unfallchirurgen e. V. Vereinigung Süddeutscher Orthopäden und Unfallchirurgen, Baden-Baden

    Google Scholar 

  3. Beckmann J, Rueth M, Mayer C, Best R, Bauer G (2014) Konfektionierter vs. individualisierter UCE – ein prospektiver randomisierter Vergleich dreier Systeme. Paper presented at the DKOU – Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin, Germany

    Google Scholar 

  4. Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21(10):2314–2324. doi:10.1007/s00167-013-2443-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63. doi:10.1007/s11999-009-1119-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carpenter DP, Holmberg RR, Quartulli MJ, Barnes CL (2014) Tibial plateau coverage in UKa: a comparison of patient specific and off-the-shelf implants. J Arthroplasty 29(9):1694–1698. doi:10.1016/j.arth.2014.03.026

    Article  PubMed  Google Scholar 

  7. Casino D, Zaffagnini S, Martelli S, Lopomo N, Bignozzi S, Iacono F, Russo A, Marcacci M (2009) Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system. Knee Surg Sports Traumatol Arthrosc 17(4):369–373. doi:10.1007/s00167-008-0699-3

    Article  PubMed  Google Scholar 

  8. Cates HEAMR, Hamel WH, Sharma A, Komistek RD (2014) In vivo kinematics for customized, individually made vs. off-the-shelf TKa during a deep knee bend and chair rise. Paper presented at the International Congress for Joint Reconstruction (ICJR) Pan Pacific Orthopaedic Congress

    Google Scholar 

  9. Chau R, Gulati A, Pandit H, Beard DJ, Price AJ, Dodd CA, Gill HS, Murray DW (2009) Tibial component overhang following unicompartmental knee replacement-does it matter? Knee 16(5):310–313. doi:10.1016/j.knee.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  10. Conteduca F, Iorio R, Mazza D, Ferretti A (2014) Patient-specific instruments in total knee arthroplasty. Int Orthop 38(2):259–265. doi:10.1007/s00264-013-2230-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dalury DF, Fisher DA, Adams MJ, Gonzales RA (2009) Unicompartmental knee arthroplasty compares favorably to total knee arthroplasty in the same patient. Orthopedics 32(4)

    Google Scholar 

  12. Dennis D, Komistek R, Scuderi G, Argenson JN, Insall J, Mahfouz M, Aubaniac JM, Haas B (2001) In vivo three-dimensional determination of kinematics for subjects with a normal knee or a unicompartmental or total knee replacement. J Bone Joint Surg Am 83(2):104–115 (A Suppl)

    PubMed  Google Scholar 

  13. Engh GA, Parks NL, Whitney CE (2014) A Prospective Randomized Study of Bicompartmental vs. Total Knee Arthroplasty with Functional Testing and Short Term Outcome. J Arthroplasty 29(9):1790–1794. doi:10.1016/j.arth.2014.04.016

    Article  PubMed  Google Scholar 

  14. Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty 24:39–43 (6 Suppl) doi:S0883-5403(09)00164-8

    Article  PubMed  Google Scholar 

  15. Gbejuade HO, White P, Hassaballa M, Porteous AJ, Robinson JR, Murray JR (2014) Do long leg supine CT scanograms correlate with weight-bearing full-length radiographs to measure lower limb coronal alignment? Knee 21(2):549–552. doi:10.1016/j.knee.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  16. Guy SP, Farndon MA, Sidhom S, Al-Lami M, Bennett C, London NJ (2012) Gender differences in distal femoral morphology and the role of gender specific implants in total knee replacement: a prospective clinical study. Knee 19(1):28–31. doi:10.1016/j.knee.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  17. Heekin RD, Fokin AA (2014) Incidence of bicompartmental osteoarthritis in patients undergoing total and unicompartmental knee arthroplasty: is the time ripe for a less radical treatment? J Knee Surg 27(1):77–81. doi:10.1055/s-0033-1349401

    Article  PubMed  Google Scholar 

  18. Holme TJ, Henckel J, Hartshorn K, Cobb JP, Hart AJ (2015) Computed tomography scanogram compared to long leg radiograph for determining axial knee alignment. Acta Orthop 86(4):440–443. doi:10.3109/17453674.2014.1003488

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hopper GP, Leach WJ (2008) Participation in sporting activities following knee replacement: total versus unicompartmental. Knee Surg Sports Traumatol Arthrosc 16(10):973–979. doi:10.1007/s00167-008-0596-9

    Article  PubMed  Google Scholar 

  20. Kamath AF, Levack A, John T, Thomas BS, Lonner JH (2014) Minimum two-year outcomes of modular bicompartmental knee arthroplasty. J Arthroplasty 29(1):75–79. doi:10.1016/j.arth.2013.04.044

    Article  PubMed  Google Scholar 

  21. Koeck FX, Beckmann J, Luring C, Rath B, Grifka J, Basad E (2011) Evaluation of implant position and knee alignment after patient-specific unicompartmental knee arthroplasty. Knee 18(5):294–299. doi:10.1016/j.knee.2010.06.008

    Article  PubMed  Google Scholar 

  22. Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W (2008) In vivo determination of total knee arthroplasty kinematics: a multicenter analysis of an asymmetrical posterior cruciate retaining total knee arthroplasty. J Arthroplasty 23(1):41–50. doi:10.1016/j.arth.2007.01.016

    Article  PubMed  Google Scholar 

  23. Kurtz WBZIM, Hamel WH, Anderle MR, Komistek RD (2014) In vivo kinematics for subjects implanted with either a traditional or a customized, individually made TKA. Paper presented at the International Congress for Joint Reconstruction (ICJR) Pan Pacific Orthopaedic Congress

    Google Scholar 

  24. Laurencin CT, Zelicof SB, Scott RD, Ewald FC (1991) Unicompartmental versus total knee arthroplasty in the same patient. A comparative study. Clin Orthop Relat Res 273:151–156

    PubMed  Google Scholar 

  25. Ledingham J, Regan M, Jones A, Doherty M (1993) Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis 52(7):520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leyvraz PF, Rakotomanana L (2000) The anatomy and function of the knee-the quest for the holy grail? J Bone Joint Surg Br 82(8):1093–1094

    Article  CAS  PubMed  Google Scholar 

  27. Liddle AD, Judge A, Pandit H, Murray DW (2014) Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet 384(9952):1437–1445. doi:10.1016/S0140-6736(14)60419-0

    Article  PubMed  Google Scholar 

  28. Mahoney OM, Kinsey T (2010) Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences. J Bone Joint Surg Am 92(5):1115–1121. doi:10.2106/JBJS.H.00434

    Article  PubMed  Google Scholar 

  29. Matsuda S, Kawahara S, Okazaki K, Tashiro Y, Iwamoto Y (2013) Postoperative alignment and ROM affect patient satisfaction after TKA. Clin Orthop Relat Res 471(1):127–133. doi:10.1007/s11999-012-2533-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92(9):1238–1244. doi:10.1302/0301-620X.92B9.23516

    Article  CAS  PubMed  Google Scholar 

  31. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: Patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43. doi:10.1097/01.blo.0000238825.63648.1e

    Article  PubMed  Google Scholar 

  32. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB (2005) Does total knee replacement restore normal knee function? Clin Orthop Relat Res 431:157–165

    Article  PubMed  Google Scholar 

  33. Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, Barrack RL (2012) Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res 470(3):889–894. doi:10.1007/s11999-011-2221-3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470(3):895–902. doi:10.1007/s11999-011-2222-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pandit H, Ward T, Hollinghurst D, Beard DJ, Gill HS, Thomas NP, Murray DW (2005) Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement. J Bone Joint Surg Br 87(7):940–945. doi:10.1302/0301-620X.87B7.15716

    Article  CAS  PubMed  Google Scholar 

  36. Parratte S, Pauly V, Aubaniac JM, Argenson JN (2010) Survival of bicompartmental knee arthroplasty at 5 to 23 years. Clin Orthop Relat Res 468(1):64–72. doi:10.1007/s11999-009-1018-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parvizi J, Nunley RM, Berend KR, Lombardi AVJ, Ruh EL, Clohisy JC, Hamilton WG, Della Valle CJ, Barrack RL (2014) High level of residual symptoms in young patients after total knee arthroplasty. Clin Orthop Relat Res 472(1):133–137. doi:10.1007/s11999-013-3229-7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patil SBA, Bugbee WD, Colwell CW Jr., D’Lima DD (2013) Patient-specific implants and cutting guides better approximate natural kinematics than standard total knee Arthroplasty. Paper presented at the Proceedings of the Orthopaedic Research Society (ORS)

    Google Scholar 

  39. Peersman G, Jak W, Vandenlangenbergh T, Jans C, Cartier P, Fennema P (2014) Cost-effectiveness of unicondylar versus total knee arthroplasty: a Markov model analysis. Knee 21(1):37–42. doi:10.1016/S0968-0160(14)50008-7

    Article  Google Scholar 

  40. Robertsson O, Bizjajeva S, Fenstad AM, Furnes O, Lidgren L, Mehnert F, Odgaard A, Pedersen AB, Havelin LI (2010) Knee arthroplasty in Denmark, Norway and Sweden. A pilot study from the Nordic Arthroplasty Register Association. Acta Orthop 81(1):82–89. doi:10.3109/17453671003685442

    Article  PubMed  PubMed Central  Google Scholar 

  41. Robertsson O, Lidgren L (2008) The short-term results of 3 common UKA implants during different periods in Sweden. J Arthroplasty 23(6):801–807. doi:S0883-5403(07)00436-6 [pii] 10.1016/j.arth.2007.07.011

    Article  PubMed  Google Scholar 

  42. Rougraff BT, Heck DA, Gibson AE (1991) A comparison of tricompartmental and unicompartmental arthroplasty for the treatment of gonarthrosis. Clin Orthop Relat Res 273:157–164

    PubMed  Google Scholar 

  43. Russell R, Brown T, Huo M, Jones R (2014) Patient-specific instrumentation does not improve alignment in total knee Arthroplasty. J Knee Surg 27(6):501–504. doi:10.1055/s-0034-1368143

    Article  PubMed  Google Scholar 

  44. Sassoon A, Nam D, Nunley R, Barrack R (2014) Systematic review of patient-specific instrumentation in total knee Arthroplasty: new but not improved. Clin Orthop Relat Res 473(1):151–158. doi:10.1007/s11999-014-3804-6

    Article  PubMed Central  Google Scholar 

  45. Scott RD (2013) Femoral and tibial component rotation in total knee arthroplasty: methods and consequences. Bone Jt J 95(11):140–143 (Suppl A) doi:10.1302/0301-620X.95B11.32765

    Article  Google Scholar 

  46. Shah SM, Dutton AQ, Liang S, Dasde S (2013) Bicompartmental versus total knee arthroplasty for medio-patellofemoral osteoarthritis: a comparison of early clinical and functional outcomes. J Knee Surg 26(6):411–416. doi:10.1055/s-0033-1343612

    Article  PubMed  Google Scholar 

  47. Sinha RBJ, Martin G, Mack D, Dauphine R, Levine M, Barnes CL (2015) Customized, individually made unicondylar knee replacement: a prospective, multicenter study of 2‑Year clinical outcomes. Paper presented at the Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin, Germany.

    Google Scholar 

  48. Stern SH, Becker MW, Insall JN (1993) Unicondylar knee arthroplasty. An evaluation of selection criteria. Clin Orthop Relat Res 286:143–148

    PubMed  Google Scholar 

  49. Stirling P, Valsalan MR, Soler A, Batta V, Malhotra RK, Kalairajah Y (2015) Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty. World J Orthop 6(2):290–297. doi:10.5312/wjo.v6.i2.290

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thienpont E, Grosu I, Paternostre F, Schwab PE, Yombi JC (2014) The use of patient-specific instruments does not reduce blood loss during minimally invasive total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 23(7):2055–2060. doi:10.1007/s00167-014-2952-2

    Article  PubMed  Google Scholar 

  51. Thienpont E, Price A (2013) Bicompartmental knee arthroplasty of the patellofemoral and medial compartments. Knee Surg Sports Traumatol Arthrosc 21(11):2523–2531. doi:10.1007/s00167-012-2303-0

    Article  PubMed  Google Scholar 

  52. Tria AJ Jr. (2013) Bicompartmental knee arthroplasty: the clinical outcomes. Orthop Clin North Am 44(3):281–286 (vii) doi:10.1016/j.ocl.2013.03.003

    Article  PubMed  Google Scholar 

  53. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87(5):646–655. doi:10.1302/0301-620X.87B5.15602

    Article  CAS  PubMed  Google Scholar 

  54. W-Dahl A, Robertsson O, Lidgren L, Miller L, Davidson D, Graves S (2010) Unicompartmental knee arthroplasty in patients aged less than 65. Acta Orthop 81(1):90–94. doi:10.3109/17453671003587150

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang HFJ, Francksen N, Estes J, Rolston L (2015) Differences in knee mechanics between customized, individually made BKR and off-the-shelf TKR patients. Paper presented at the British Association for Surgery of the Knee (BASK), Telford – UK.

    Google Scholar 

  56. Watanabe T, Ishizuki M, Muneta T, Banks SA (2012) Matched comparison of kinematics in knees with mild and severe varus deformity using fixed- and mobile-bearing total knee arthroplasty. Clin Biomech (Bristol Avon) 27(9):924–928. doi:10.1016/j.clinbiomech.2012.07.005

    Article  Google Scholar 

  57. Yamabe E, Ueno T, Miyagi R, Watanabe A, Guenzi C, Yoshioka H (2013) Study of surgical indication for knee arthroplasty by cartilage analysis in three compartments using data from Osteoarthritis Initiative (OAI). BMC Musculoskelet Disord 14:194 doi:10.1186/1471-2474-14-194

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yan M, Wang J, Wang Y, Zhang J, Yue B, Zeng Y (2014) Gender-based differences in the dimensions of the femoral trochlea and condyles in the Chinese population: correlation to the risk of femoral component overhang. Knee 21(1):252–256. doi:10.1016/j.knee.2012.11.005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Beckmann.

Ethics declarations

Interessenkonflikt

J. Beckmann gibt an, Beraterhonorare von ConforMIS zu erhalten. A. Steinert hat von der Firma ConforMIS Honorare für Lehrtätigkeiten erhalten. C. Zilkens, A. Zeh, C. Schnurr, M. Schmitt-Sody und M. Gebauer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckmann, J., Steinert, A., Zilkens, C. et al. Patientenspezifische Instrumente und Implantate beim Teilgelenkersatz des Kniegelenkes (ConforMIS iUni, iDuo). Orthopäde 45, 322–330 (2016). https://doi.org/10.1007/s00132-016-3237-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-016-3237-x

Schlüsselwörter

Keywords

Navigation