Skip to main content
Log in

Verschleiß und aseptische Prothesenlockerung

Eine Bestandsaufnahme

Implant wear and aseptic loosening

An overview

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Der Verschleiß von Gelenkimplantaten unterliegt multifaktoriellen Einflussgrößen, die in Ihrem Zusammenspiel auch bei nominell identischen Gleitpaarungen höchst unterschiedliche Partikelmengen und -formen generieren können. Die biologische Reaktion und damit letztendlich der klinische Erfolg des Implantats wird dabei von den speziellen Partikeleigenschaften beeinflusst. Eine dauerhafte Implantatversorgung bedingt einen optimierten Kompromiss zwischen Material, Design, Operationsmethode und patientenspezifischen Faktoren.

Abstract

Wear of total joint implants is multifactorial in nature. Even for identical materials and geometries, the interaction of those parameters can generate different numbers of particles as well as different particle sizes and shapes. These different wear-particle characteristics will directly influence the biological response to an implant and thereby its clinical success. The long-term success of a total joint replacement requires an optimized compromise among implant material, design, surgical procedure, and biological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64(9):1328–1335

    PubMed  CAS  Google Scholar 

  2. Antoniou J, Zukor DJ, Mwale F et al (2008) Metal ion levels in the blood of patients after hip resurfacing: A comparison between twenty-eight and thirty-six-millimeter-head metal-on-metal prostheses. J Bone Joint Surg Am 90(Suppl 3):142–148

    Article  PubMed  Google Scholar 

  3. Benson LC, DesJardins JD, Harman MK, LaBerge M (2002) Effect of stair descent loading on ultra-high molecular weight polyethylene wear in a force-controlled knee simulator. Proc Instn Mech Engrs. J Eng Med 216(H):409–418

    Article  CAS  Google Scholar 

  4. Bishop NE, Waldow F, Morlock MM (2008) Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med Eng Phys 30(8):1057–1064

    Article  PubMed  CAS  Google Scholar 

  5. Campbell P, Ma S, Yeom B et al (1995) Isolation of predominantly sub-micron sized UHMWPE wear particles from periprosthetic tissues. J Biomed Mater Res 29(1):127–131

    Article  PubMed  CAS  Google Scholar 

  6. Campbell PA, Wang M, Amstutz HC, Goodman SB (2002) Positive cytokine production in failed metal-on-metal total hip replacements. Acta Orthop Scand 73(5):506–512

    Article  PubMed  Google Scholar 

  7. Catelas I, Bobyn JD, Medley JB et al (2003) Size, shape and composition of wear particles from metal-metal hip simulator testing: Effects of alloy and number of loading cycles. J Biomed Mater Res 67(1):312–327

    Article  Google Scholar 

  8. Catelas I, Campbell PA, Bobyn JD et al (2006) Wear particles from metal-on-metal total hip replacements: effects of implant design and implantation time. Proc Inst Mech Eng J Eng Med 220(2):195–208

    Article  CAS  Google Scholar 

  9. Catelas I, Medley JB, Campbell PA et al (2004) Comparison of in vitro with in vivo characteristics of wear particles from metal-metal hip implants. J Biomed Mater Res B 70(2):167–178

    Article  Google Scholar 

  10. Charnley J (1979) Low friction principle. In Low friction arthroplasty of the hip: Theory and practice. Springer, Berlin Heidelberg

    Google Scholar 

  11. Clarke C, Gustafson A (1996) Hip-simulator ranking of polyethylene wear. Acta Orthop Scand 67(2):128–132

    PubMed  CAS  Google Scholar 

  12. Clarke IC, Gustafson A (2000) Clinical and hip simulator comparisons of ceramic-on-polyethylene and metal-on-polyethylene wear. Clin Orthop Relat Res 379:34–40

    Article  PubMed  Google Scholar 

  13. Daniel J, Ziaee H, Salama A et al (2006) The effect of the diameter of metal-on-metal bearings on systemic exposure to cobalt and chromium. J Bone Joint Surg Br 88(4):443–448

    Article  PubMed  CAS  Google Scholar 

  14. DeHaan R, Campbell P, Reid S et al (2007) Metal ion levels in a triathlete with a metal-on-metal resurfacing arthroplasty of the hip. J Bone Joint Surg Br 89:538–541

    Article  CAS  Google Scholar 

  15. Digas G, Kärrholm J, Thanner J et al (2004) The Otto Aufranc Award. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis. Clin Orthop Relat Res 429:6–16

    Article  PubMed  Google Scholar 

  16. Dowson D (2006) Tribological principles in metal-on-metal hip joint design. Proc Inst Mech Eng (H) 220(2):161–171

    Article  Google Scholar 

  17. Dumbleton J, D’Antonio J, Manley M et al (2006) The basis for a second-generation highly crosslinked UHMWPE. Clin Orthop Relat Res 453:265–271

    Article  PubMed  Google Scholar 

  18. Engh CA Jr, MacDonald SJ, Sritulanondha S et al (2009) 2008 John Charnley award: metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467(1):101–111

    Article  PubMed  Google Scholar 

  19. Geerdink CH, Grimm B, Ramakrishnan R et al (2006) Crosslinked polyethylene compared to conventional polyethylene in total hip replacement: pre-clinical evaluation, in-vitro testing and prospective clinical follow-up study. Acta Orthop 77(5):719–725

    Article  PubMed  Google Scholar 

  20. Goodman SB, Chin RC, Chiou SS et al (1989) A clinical-pathologic-biochemical study of the membrane surrounding loosened and non-loosened total hip arthroplasties. Clin Orthop Relat Res 244:182–187

    PubMed  Google Scholar 

  21. Haider H, Walker P, DesJardins J, Blunn G (2006) Effects of patient and surgical alignment variables on the kinematics in TKR simulation under force-control. J ASTM Intern 3:10

    Google Scholar 

  22. Hallab NJ, Anderson S, Stafford T et al (2005) Lymphocyte responses in patients with total hip arthroplasty. J Orthop Res 23(2):384–391

    Article  PubMed  CAS  Google Scholar 

  23. Halley D, Glassman A, Crowninshield RD (2004) Recurrent dislocation after revision total hip replacement with a large prosthetic femoral head. A Case Report. J Bone Joint Surg Am 86:827–830

    PubMed  Google Scholar 

  24. Harman M, DesJardins J, Benson L et al (2009) Comparison of polyethylene tibial insert damage from in vivo function and in vitro wear simulation. J Orthop Res 27(4):540–548

    Article  PubMed  Google Scholar 

  25. Hatton A, Nevelos JE, Nevelos AA et al (2002) Alumina-alumina artificial hip joints. Part I: a histological analysis and characterization of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 23(16):3429–3440

    Article  PubMed  CAS  Google Scholar 

  26. Haynes DR, Crotti TN, Potter AE et al (2001) The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg Br 83(6):902–911

    Article  PubMed  CAS  Google Scholar 

  27. Hermida JC, Bergula A, Chen P et al (2003) Comparison of the wear rates of twenty-eight and thirty-two-millimeter femoral heads on cross-linked polyethylene acetabular cups in a wear simulator. J Bone Joint Surg Am 85(12):2325–2331

    PubMed  Google Scholar 

  28. Hills BA (2000) Boundary lubrication in vivo. Proc Inst Mech Eng (H) 214(1):83–94

    Article  Google Scholar 

  29. Hood RW, Wright TM, Burstein AH (1983) Retrieval analysis of total knee prostheses: a method and its application to 48 total condylar prostheses. J Biomed Mater Res 17(5):829–842

    Article  PubMed  CAS  Google Scholar 

  30. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286

    Article  PubMed  CAS  Google Scholar 

  31. Jacobs JJ, Hallab NJ (2006) Loosening and osteolysis associated with metal-on-metal bearings: A local effect of metal hypersensitivity? J Bone Joint Surg Am 88(6):1171–1172

    Article  PubMed  Google Scholar 

  32. Kaddick C, Wimmer MA (2001) Hip simulator wear testing according to the newly introduced standard ISO 14242. Proc Inst Mech Eng (H) 215(5):429–442

    Article  Google Scholar 

  33. Kang L, Galvin AL, Brown TD et al (2008) Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE. J Biomech 41(2):340–346

    Article  PubMed  Google Scholar 

  34. Keurentjes JC, Kuipers RM, Wever DJ, Schreurs BW (2008) High Incidence of squeaking in THAs with alumina ceramic-on-ceramic bearings. Clin Orthop Relat Res 466(6):1438–1443

    Article  PubMed  CAS  Google Scholar 

  35. Kurtz SM (2004) The UHMWPE handbook. Elsevier, Amsterdam

  36. Laurent MP, Johnson TS, Crowninshield RD et al (2008) Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J Arthroplasty 23(5):751–761

    Article  PubMed  Google Scholar 

  37. Lerouge S, Huk O, Yahia LH, Sedel L (1996) Characterization of in vivo wear debris from ceramic-ceramic total hip arthroplasties. J Biomed Mater Res 32(4):627–633

    Article  PubMed  CAS  Google Scholar 

  38. McKellop H, Shen FW, Lu B (1999) Development of an extremely wear resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res 17:157–167

    Article  PubMed  CAS  Google Scholar 

  39. Nassutt R, Wimmer MA, Schneider E, Morlock MM (2003) The influence of resting periods on friction in the artificial hip joint. Clin Orthop Relat Res 407:127–138

    Article  PubMed  Google Scholar 

  40. Nevelos JE, Ingham E, Doyle C et al (1999) Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses. Biomaterials 20(19):1833–1840

    Article  PubMed  CAS  Google Scholar 

  41. Nevelos JE, Ingham E, Doyle C et al (2001) Wear of HIPed and non-HIPed alumina-alumina hip joints under standard and severe simulator testing conditions. Biomaterials 22(16):2191–2197

    Article  PubMed  CAS  Google Scholar 

  42. Ngai V, Wimmer MA (2009) Kinematic evaluation of cruciate-retaining total knee replacement patients during level walking: A comparison with the displacement-controlled ISO standard. J Biomech (in press; 10.1016/j.jbiomech.2009.06.030)

  43. Orozco DA, Briggs AL, Ngai V, Wimmer MA (2008) Occurrence of daily activity transitions in an active TKR population. Trans of the Orthop Res Society 33:1975

    Google Scholar 

  44. Otto J, Callaghan J, Brown T (2001) Mobility and contact mechanics of a rotating platform total Knee replacement. Clin Orthop Relat Res 392:24–37

    Article  PubMed  Google Scholar 

  45. Otto JK, Callaghan JJ, Brown TD (2001) Mobility and contact mechanics of a rotating platform total Knee replacement. Clin Orthop Relat Res 392:24–37

    Article  PubMed  Google Scholar 

  46. Pandit H, Glyn-Jones S, McLardy-Smith P et al (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90(7):847–851

    Article  PubMed  CAS  Google Scholar 

  47. Anderson PA, Kurtz SM, Toth JM (2006) Explant analysis of total disc replacement. Semin Spine Surg 18:109–116

    Article  Google Scholar 

  48. Punt IM, Visser VM, van Rhijn LW et al (2008) Complications and reoperations of the SB Charite‘ lumbar disc prosthesis: experience in 75 patients. Eur Spine J 17:36–43

    Article  PubMed  Google Scholar 

  49. Richards L, Brown C, Stone MH et al (2008) Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo. J Bone Joint Surg Br 90(8):1106–1113

    PubMed  CAS  Google Scholar 

  50. Rosneck J, Klika A, Barsoum W (2008) A rare complication of ceramic-on-ceramic bearings in total hip arthroplasty. J Arthroplasty 23(2):311–313. Epub 2007 Sep 24

    Article  PubMed  Google Scholar 

  51. Röhrl SM, Li MG, Nilsson KG, Nivbrant B (2007) Very low wear of non-remelted highly cross-linked polyethylene cups: an RSA study lasting up to 6 years. Acta Orthop 78(6):739–745

    Article  PubMed  Google Scholar 

  52. Schwenke T, Borgstede LL, Schneider E, Wimmer MA (2006) Slip velocity direction impacts wear in TKA. J ASTM Intern 3(7)

  53. Scott M, Morrison M, Mishra SR, Jani S (2005) Particle analysis for the determination of UHMWPE wear. J Biomed Mater Res B Appl Biomater 73(2):325–337

    PubMed  CAS  Google Scholar 

  54. Shanbhag AS, Jacobs JJ, Glant T et al (1994) Composition and morphology of wear debris in failed uncemented total hip replacement. J Bone Joint Surg Br 76(1):60–67

    PubMed  CAS  Google Scholar 

  55. Skipor AK, Campbell PA, Patterson LM et al (2002) Serum and urine metal levels in patients with metal-on-metal surface arthroplasty. J Mater Sci Mater Med 13(12):1227–1234

    Article  PubMed  CAS  Google Scholar 

  56. Sprecher CM, Schneider E, Wimmer MA (2004) Generalized size and shape description of UHMWPE wear debris – A Comparison of Cross-linked, Enhanced Fused, and Standard Polyethylene Particles. J ASTM Intern 1(1):ID JAI11202_11 (online)

    Google Scholar 

  57. Stallforth H, Ungethüm M (1977) Development of a knee joint simulator. Arch Orthop Unfallchirurg 90(3):343–53

    Article  CAS  Google Scholar 

  58. Tarasevicius S, Kesteris U, Robertsson O, Wingstrand H (2006) Femoral head diameter affects the revision rate in total hip arthroplasty: an analysis of 1,720 hip replacements with 9–21 years of follow-up. Acta Orthop 77(5):706–709

    Article  PubMed  Google Scholar 

  59. Tower SS, Currier JH, Currier BH et al (2007) Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am 89:2212–2217

    Article  PubMed  Google Scholar 

  60. Ungethüm M, Hinterberger J (1978) 2nd Generation of the Munich hip-joint-simulator. Arch Orthop Trauma Surg 91(3):233–237

    Article  PubMed  Google Scholar 

  61. Urban R, Tomlinson M, Hall DJ, Jacobs JJ (2004) Accumulation in liver and spleen of metal particles generated at nonbearing surfaces in hip arthroplasty. J Arthroplasty 19(8 Suppl 3):94–101

    Article  PubMed  Google Scholar 

  62. Walter WL, O’toole GC, Walter WK et al (2007) Squeaking in ceramic-on-ceramic hips: the importance of acetabular component orientation. J Arthroplasty 22(4):496–503

    Article  PubMed  Google Scholar 

  63. Wang ML, Sharkey PF, Tuan RS (2004) Particle Bioreactivity and Wear-Mediated Osteolysis. J Arthroplasty 19(8):1028–1038

    Article  PubMed  Google Scholar 

  64. Waugh W (1990) John Charnley: The man and the hip. Springer, berlin London

  65. Willert H, Buchhorn G, Fayaayazi A, Lohmann C (2000) Histopathological changes around metal/metal joints indicate delayed type hypersensitivity. Preliminary results of 14 cases. Osteologie 9:2–16

    Google Scholar 

  66. Willert HG, Bertram H, Buchhorn GH (1990) Osteolysis in alloarthroplasty of the hip. The role of ultrahigh molecular weight polyethylene wear particles. Clin Orthop Relat Res 258:95–107

    PubMed  Google Scholar 

  67. Willert HG, Buchhorn GH, Fayyazi A et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36

    Article  PubMed  Google Scholar 

  68. Wimmer MA, Andriacchi TP, Natarajan RN et al (1998) A striated pattern of wear in ultrahigh-molecular-weight polyethylene components of Miller-Galante Total Knee Arthroplasty. J Arthroplasty 13:8–16

    Article  PubMed  CAS  Google Scholar 

  69. Wimmer MA, Loos J, Nassutt R et al (2001) The acting wear mechanisms on metal-on-metal hip joint bearings – in vitro results. Wear 250:129–139

    Article  Google Scholar 

  70. Wimmer MA, Nassutt R, Sprecher C et al (2006) Investigation on stick phenomena in metal-on-metal hip joints after resting periods, Proc. IMechE Vol. 220 Part H: J Engineering in Medicine 219–227

    Google Scholar 

  71. Wolf C, Macho C, Lederer K (2006) Accelerated ageing experiments with crosslinked and conventional ultra-high molecular weight polyethylene (UHMW-PE) stabilised with alpha-tocopherol for total joint arthroplasty. J Mater Sci Mater Med 17(12):1333–1340

    Article  PubMed  CAS  Google Scholar 

  72. Wright T (2005) Polyethylene in Knee Arthroplasty. Clin Orthop Relat Res 440:141–148

    Article  PubMed  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kaddick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaddick, C., Catelas, I., Pennekamp, P. et al. Verschleiß und aseptische Prothesenlockerung. Orthopäde 38, 690–697 (2009). https://doi.org/10.1007/s00132-009-1431-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1431-9

Schlüsselwörter

Keywords

Navigation