Skip to main content
Log in

Moderne 3-Komponenten-Sprunggelenkprothesen

Häufigkeit und Ursachen von Luxation und vorzeitigem Verschleiß des Polyethylengleitkerns

Modern three-piece total ankle replacement

Frequency and causes of luxation and premature wear of the polyethylene bearing

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bei den 3-Komponenten-Prothese der 3. Generation wird in einzelnen Arbeiten immer wieder über Komplikationen mit dem PE-Inlay wie Luxation und starkem Verschleiß berichtet. Ziel der Arbeit war es, die Ursache und Häufigkeit solcher Komplikationen anhand einer systematischen Literaturrecherche zu ermitteln und zu diskutieren.

Nach systematischer Literaturrecherche der aktuellen Literatur seit 2000 wurden 26 Originalarbeiten mit insgesamt 1318 nachuntersuchten Sprunggelenkprothesen ausgewertet. Von den in diesen 26 Arbeiten erfassten 1318 Sprunggelenkprothesen wurden insgesamt 188 (14,3%) operativ revidiert. 56 Komplikationen wurden im Zusammenhang mit dem PE-Inlay beschrieben (4,2%). In 39 Fällen (3,0%), d. h. 20,7% aller Revisionen, erfolgten Revisionen aufgrund von Komplikationen mit dem mobilen Gleitkern der untersuchten 3-Komponenten-Prothesen. Insgesamt wurden 17 Fälle mit Subluxation (1,3%), 15 Fälle wegen asymmetrischer Belastung des Inlays (1,1%), 10 Fälle wegen eines Bruches des Polyethylen- (PE-)Inlays (0,76%), 7 Prothesen wegen massivem PE-Verschleiß (0,53%) und weitere 7 Prothesen wegen Luxation des Inlays (0,53%) revidiert.

Komplikationen im Zusammenhang mit dem meniskalen Lager bei oberen Sprunggelenkprothesen wie Luxationen, Subluxationen, massivem Verschleiß und Bruch des PE-Inlays sind seltene Komplikationen, die nicht dem Funktionsprinzip der modernen 3-Komponenten-Prothesen anzulasten sind. Ursache sind meist die inkorrekte Indikationsstellung, nicht korrektes Weichteilbalancing und nicht korrekte Implantatlage, Implantation bei vorbestehendem ausgeprägtem Rückfußmalalignement oder deutlicher Sprunggelenkinstabilität.

Abstract

Luxation and excessive wear of the mobile bearing in modern three-piece total ankle replacement (TAR) is reported. We conducted a systematic review of studies to explore and discuss the rate and causes of these complications.

A systematic review of studies since 2000 showed 26 studies with altogether 1,318 followed up TARs which we analyzed. Of these 1,318 TARs, 188 (14.3%) were revised and 56 (4.2%) complications with the mobile bearing were reported. A total of 39 cases (3%), i.e., 20.7% of all revisions, were revised due to failure of the mobile bearing, including 17 cases with subluxation (1.3%), 15 with asymmetric load of the bearing (1.1%), 10 with fracture of the polyethylene (PE) inlay (0.76%), 7 with massive PE wear (0.53%), and 7 with luxation of the meniscal bearing (0.53%).

Complications due to the meniscal mobile bearing in TARs such as luxation, subluxation, massive wear, and fracture of the PE inlay are rare complications. The cause of these complications is regularly not found in the design of this three-piece total ankle replacement. Causes of failure of the mobile bearing are mostly found in incorrect indication, incorrect soft tissue balancing, incorrect positioning of components, implantation in ankles with hindfoot malalignment and ankle instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ali MS, Higgins GA, Mohammed M (2007) Intermediate results of Buechel Pappas unconstrained uncemented total ankle replacement for osteoarthritis. J Foot Ankle Surg 46: 16–20

    Article  PubMed  CAS  Google Scholar 

  2. Anderson T, Montgomery F, Carlsson A (2003) Uncemented S.T.A.R. Total ankle prosthesis three to eight year follow up of 51 consecutive ankles. J Bone Joint Surg Am 85: 1321–1329

    PubMed  Google Scholar 

  3. Bartel DL, Rawlinson JJ, Burstein AH et al. (1995) Stresses in polyethylene components of contemporary total knee replacements. Clin Orthop 317: 76–82

    PubMed  Google Scholar 

  4. Buechel, FF, Pappas MJ, Iorio LJ (1988) New Jersey low contact stress total ankle replacement: biomechnical rationale and review of 23 cementless cases. Foot Ankle Int 8 279–290

    Google Scholar 

  5. Buechel FF (1991) Total ankle replacement – state of the art. Foot Ankle 13: 2671–2687

    Google Scholar 

  6. Buechel FF, Pappas MJ (1992) Survivorship and clinical evaluation of cementless meniscal bearing total ankle replacements. Semin Arthrop 3: 43–50

    CAS  Google Scholar 

  7. Buechel FF Sr, Buechel FF Jr, Pappas MJ (2002) Eighteen years evaluation of cementless meniscal bearing total ankle replacements. AAOS Instruct Course Lectures 51(16): 143–151

    Google Scholar 

  8. Buechel FF Sr, Buechel FF Jr, Pappas MJ (2003) Ten years evaluation of cementless Buechel Pappas meniscal bearing total ankle replacements. Foot Ankle Int 24: 426–472

    Google Scholar 

  9. Buechel FF Sr, Buechel FF Jr, Pappas MJ (2004) Twenty-year evaluation of cementless mobile-mearing total ankle replacements. Clin Orthop 424: 19–26

    Article  PubMed  Google Scholar 

  10. Burge P, Evans M (1986) Effect of surface replacement arthroplasty on stability of the ankle. Foot Ankle 7: 10–17

    PubMed  CAS  Google Scholar 

  11. Bonnin M, Judet T, Colombier JA et al. (2004) Midterm results of the salto total ankle prosthesis. Clin Orthop 424: 6–16

    Article  PubMed  Google Scholar 

  12. Carlsson A (2006) Einfach- und doppelt beschichtete STAR-Sprunggelenkprothesen. Orthopade 35: 527–532

    Article  PubMed  CAS  Google Scholar 

  13. Coester LM, Saltzman CL, Leupold J, Pontarelli W (2001) Long-term results following ankle arthrodesis for posttraumatic arthritis. J Bone Joint Surg Am 83: 219–228

    PubMed  Google Scholar 

  14. Conti SF, Wong YS (2001) Complications of total ankle replacement. Clin Orthop 391: 105–114

    Article  PubMed  Google Scholar 

  15. Conti SF, Wong YS (2002) Complications of total ankle replacement. Foot Ankle Clin 7: 791–807

    Article  PubMed  Google Scholar 

  16. Christ RM, Hagena FW (2005) Komplikationen und Revisionseingriffe nach OSG-Totalendoprothesen. Fuss Sprungg 3: 112–121

    Article  Google Scholar 

  17. Delagoutte JP (2002) Retrospective analysis of 110 ankle prostheses. Eur J Orthop Surg Traumatol 12: 198−205

    Google Scholar 

  18. Doets HC, Brand R, Nelissen RGHH (2006) Total ankle arthroplasty in infammatory joint disease with use of two mobile-bearing designs. J Bone Joint Surg Am 88: 1272–1284

    Article  PubMed  Google Scholar 

  19. Drzala M, Lin SS Eng KO (1998) Abstract: Independent evaluation of Buechel Pappas second-generation cementless total ankle arthroplasty intermediate term result. AOFAS 28th Annual Meeting: Scientific Papers. American Orthopaedic Foot and Ankle Society, Seattle, WA, p 11

    Google Scholar 

  20. Easley ME, Vertullo CJ, Urban WC, Nunley JA (2002) Total ankle arthroplasty. J Am Acad Orthop Surg 10: 157–167

    PubMed  Google Scholar 

  21. Ewald FC, Walker PS (1988) The current status of total knee replacement. Rheum Dis Clin North Am 14: 579–590

    PubMed  CAS  Google Scholar 

  22. Fink B, Rüther W, Tillmann K (1999) Die OSG-Endoprothese. Entwicklung und Ergebnisse. Aktuel Rheumatol 24: 95–101

    Article  Google Scholar 

  23. Giannini S, Leardini A, O‚Connor JJ (2000) Total ankle replacement: review of the designs and of the current status. Foot Ankle Surg 6: 77–88

    Article  Google Scholar 

  24. Goodfellow J, O’Connor J (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg 60-B: 358–369

    Google Scholar 

  25. Herberts P, Goldie IF, Körner L et al. (1982) Endoprosthetic arthroplasty of the ankle joint. A clinical and radiological follow-up. Acta Orthop Scand 52: 687–696

    Google Scholar 

  26. Hintermann B, Nigg BM (1995) Influence of arthrodeses on kinematics of the axially loaded ankle complex during Dorsiflexion/Plantarflexion. Foot Ankle Int 16: 633–663

    PubMed  CAS  Google Scholar 

  27. Hintermann B, Vaderrabano V (2001) Endoprothetik am oberen Sprunggelenk. Z Arztl Fortbild Qualitatssich 95: 187–194

    PubMed  CAS  Google Scholar 

  28. Hintermann B, Valderrabano V (2003) Total ankle replacement. Foot Ankle Clin North Am 8: 375–405

    Article  Google Scholar 

  29. Hintermann B, Valderrabano V, Derreymaeker G, Dick W (2004) The HINTEGRA ankle: Rationale and short-term results of 122 consecutive ankles. Clin Orthop 424: 57–68

    Article  PubMed  Google Scholar 

  30. Hintermann B, Valderrabano V, Knupp K, Horisberger M (2006) Die HINTEGRA-Sprunggelenkprothese: Kurz- und mittelfristige Erfahrungen. Orthopade 35: 533–545

    Article  PubMed  CAS  Google Scholar 

  31. Knecht SI, Estin M, Callaghan JJ et al. (2004) The agility total ankle arthroplasty. seven to sixteen-year follow- up. J Bone Joint Surg Am 86: 1161–1171

    PubMed  Google Scholar 

  32. Kofoed H, Stürup J (1994) Comparison of ankle arthroplasty and arthrodesis. A prospective series with long term follow up. Foot 4: 6–9

    Article  Google Scholar 

  33. Kofoed H, Danborg L (1995) Biological fixation of ankle arthroplasty. Foot 5: 27–31

    Article  Google Scholar 

  34. Kofoed H (2004) Scandinavian Total Ankle Replacement (STAR). Clin Orthop 424: 73–79

    Article  PubMed  Google Scholar 

  35. Leicht P, Kofoed H (1992) Subtalar arthrosis folowing ankle arthrodesis. Foot 2: 89–92

    Article  Google Scholar 

  36. Lundberg A, Svennson OK, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg Br 71: 94–99

    PubMed  CAS  Google Scholar 

  37. Murnaghan JM, Warnock DS, Henderson SA (2005) Total ankle replacement. Early experiences with STAR prosthesis. Ulster Med J 74: 9–13

    PubMed  CAS  Google Scholar 

  38. Myerson MS, Mroczeck K (2003) Perioperative complications of total ankle arthroplasy. Foot Ankle Int 24: 17–21

    PubMed  Google Scholar 

  39. Natens P, Dereymaeker G, Abbara M, Matricali G (2003) Early results after four years experience ith the S.T.A.R. uncemented total ankle prosthesis. Acta Orthop Belg 69: 49–58

    PubMed  Google Scholar 

  40. Nishikawa M, Tomita T, Fujii M et al. (2004) Total ankle replacement in rheumatoid arthritis. Int Orthop 28: 123–126

    Article  PubMed  Google Scholar 

  41. Patsalis T (2004) Die AES-Sprunggelenksprothese. Fuss Sprung 2: 38–44

    Article  Google Scholar 

  42. Rudigier R, Grundel H, Menzinger F (2001) Prosthetic 2001 Replacement of the ankle in posttraumatic arthrosis. Eur J Trauma 27: 66–74

    Google Scholar 

  43. Saltzman CL (2000) Perspective on total ankle replacement. Foot Ankle Clin 5: 751–775

    Google Scholar 

  44. Saltzman CL, Amendola A, Anderson R et al. (2003) Surgeon training and complications in total ankle arthroplasty. Foot Ankle Int 24: 514–518

    PubMed  Google Scholar 

  45. San Giovanni TP, Keblish DJ, Thomas WH, Wilson MG (2006) Eight-year results of a minimally constrained total ankle arthroplasty. Foot Ankle Int 27: 418–426

    Google Scholar 

  46. Spirt AA, Assal M, Hansen ST Jr (2004) Complications and failure after total ankle arthroplasty. J Bone Joint Surg Am 86: 1172–1178

    PubMed  Google Scholar 

  47. Stengel D, Bauwens K, Ekkernkamp A, Cramer J (2005) Efficacy of total ankle replacement. Arch Orthop Trauma Surg 125: 109–119

    Article  PubMed  Google Scholar 

  48. Su EP, Kahn B, Figgie MP (2004) Total ankle replacement in patients with rheumatoid arthritis. Clin Orthop 424: 32–38

    Article  PubMed  Google Scholar 

  49. Takakura Y, Tanaska Y, Sugimoto K et al. (1990) Ankle arthroplasty. A comparative study of cemented metal and uncemented ceramic prostheses. Clin Orthop 252: 209–216

    PubMed  Google Scholar 

  50. Tillmann K (1977) Der rheumatische Fuß und seine Behandlung. Bücherei des Orthopäden, Bd. 18. Enke, Stuttgart

  51. Tillmann K (1995) Eingriffe am oberen Sprunggelenk. In: Wirth CJ, Kohn D, Siebert WE (Hrsg) Rheumaorthopädie. Untere Extremität. Springer, Berlin Heidelberg New York, S 166–173

  52. Valderrabano V, Hintermann B, Dick W (2004) Scandinavian total ankle replacement. Clin Orthop 424: 47–56

    Article  PubMed  Google Scholar 

  53. Valderrabano V, Hintermann B (2004) HINTEGRA-Sprunggelenkprothese. Fuss Sprung 2: 7–16

    Article  Google Scholar 

  54. Weber M, Bonnin M, Colombier JA, Judet Th (2004) Fuss Sprung 2: 39–37

  55. Wood PLR, Clough TM, Jar S (2000) Clinical comparison of two ankle replacements. Foot Ankle Int 21: 546–550

    PubMed  Google Scholar 

  56. Wood PLR (2002) Experience with the STAR ankle arthroplasty at Whritington Hospital, UK. Foot Ankle Clin 7: 755–756

    Article  PubMed  Google Scholar 

  57. Wood PLR, Deakin S (2003) Total ankle replacement. The results in 200 ankles. J Bone Joint Surg Br 85: 334–341

    Article  PubMed  CAS  Google Scholar 

  58. Ziegler J, Amlang M, Bottesi M et al. (2007) Ergebnisse endoprothetischer Versorgung bei Patienten vor dem 50. Lebensjahr. Orthopade 36: 325–336

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.H. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, A., Fink, B. Moderne 3-Komponenten-Sprunggelenkprothesen. Orthopäde 36, 908–916 (2007). https://doi.org/10.1007/s00132-007-1141-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-007-1141-0

Schlüsselwörter

Keywords

Navigation