Skip to main content
Log in

Brachytherapie des Zervixkarzinoms

Innovationen

Brachytherapy for cervical cancer

Innovations

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Die intrauterine Brachytherapie ist eine wesentliche Komponente der definitiven Behandlung des Zervixkarzinoms, vor allem bei lokal fortgeschrittener Erkrankung.

Während der letzten Jahrzehnte wurden richtungweisende Fortschritte in der Entwicklung der Brachytherapietechniken erzielt, um die Applikation der Strahler und so die Dosisverteilung im Tumor und in den angrenzenden Risikoorganen zu optimieren: Afterloading-Technik, computergestützte Rechnerplanung und Bestrahlung mit hoher Dosisleistung („high dose rate“, HDR).

In den letzten Jahren lag der Fokus der Entwicklung auf der bildgestützten Brachytherapie. Sie erlaubt eine Anpassung der Strahlendosen bezogen auf die individuelle, dreidimensionale Tumorausbreitung und das individuelle 3D-Tumoransprechen nach Radio-Chemo-Therapie unter Berücksichtigung der Strahlendosen in den angrenzenden Risikoorganen.

Erste klinische Erfahrungen mit der 3D-MRT-gestützten Brachytherapie an mehr als 200 Patientinnen zeigen exzellente lokale Kontrollraten (90–100%, stadienabhängig) im Vergleich mit historischen Daten (60–90%). Ausmaß und Häufigkeit nennenswerter Nebenwirkungen scheinen außerordentlich begrenzt zu sein. Die MRT-gestützte Brachytherapie sollte als Therapie der Wahl bei fortgeschrittenen Zervixkarzinomen zur Anwendung kommen, damit das große Potenzial der modernen Radiotherapie auch für Zervixkarzinompatientinnen optimal genutzt werden kann.

Abstract

Brachytherapy (BT) is an essential component of the definitive treatment of patients with cervical cancer, particularly in locally advanced stages. Throughout the years, progress has been made in BT techniques in an attempt to improve dose delivery while minimizing side effects and maximizing local control (LC). This includes the use of high dose rate and afterloading machines, yielding patient benefits such as the ability to give higher doses in a shorter time and no need for total isolation. Lately, the focus of research and development has shifted to image-guided radiotherapy/BT. The use of computed tomography, ultrasound, and, particularly, magnetic resonance imaging (MRI) in the guidance of BT implants allows for higher doses to the tumor based on spread and response. Data on three-dimensional MRI-guided BT have shown higher LC rates (90–100%, stage-dependent) compared with historical data (60–90%). The rate and profile of side effects seem to be similar to those for standard BT. Despite remaining uncertainties related to MRI-guided BT, we recommend this therapeutic modality in locally advanced cervical cancer (IIB–IVA) to exploit the full potential of modern radiotherapy (combined with chemotherapy) and improve the therapeutic ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Potter R (2002) Modern imaging in brachytherapy. In: Gerbaulet A et al (eds) The GEC ESTRO handbook of brachytherapy, pp  123–151

  2. Potter R et al (2000) Definitive radiotherapy based on HDR brachytherapy with iridium 192 in uterine cervix carcinoma: report on the Vienna University Hospital findings (1993–1997) compared to the preceding period in the context of ICRU 38 recommendations. Cancer Radiother 4(2):159–172

    CAS  PubMed  Google Scholar 

  3. Gerbaulet A et al (2002) The GEC ESTRO handbook of brachytherapy. ESTRO, Brussels

  4. ICRU (1985) Dose and volume specification for reporting intracavitary therapy in gynaecology. International Commission of Radiation Units and Measurements, Bethesda/MD

  5. Chargari C et al (2008) Physics contributions and clinical outcome with 3D-MRI-based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Radiat Oncol Biol Phys

  6. Potter R et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83(2):148–155

    Article  PubMed  Google Scholar 

  7. Potter R et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78(1):67–77

    Article  PubMed  Google Scholar 

  8. Haie-Meder C et al (2005) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74(3):235–245

    Article  PubMed  Google Scholar 

  9. Kirisits C et al (2005) Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62(3):901–911

    PubMed  Google Scholar 

  10. Lang S et al (2007) Treatment planning for MRI assisted brachytherapy of gynecologic malignancies based on total dose constraints. Int J Radiat Oncol Biol Phys 69(2):619–627

    PubMed  Google Scholar 

  11. De Brabandere M et al (2008) Potential of dose optimisation in MRI-based PDR brachytherapy of cervix carcinoma. Radiother Oncol 88(2):217–226

    Article  Google Scholar 

  12. Dimopoulos J et al (2009) Dose-effect relationship for local control of cervical cancer by magnetic resonance image guided brachytherapy. Radiother Oncol

  13. Kirisits C et al (2007) Accuracy of volume and DVH parameters determined with different brachytherapy treatment planning systems. Radiother Oncol 84(3):290–297

    Article  PubMed  Google Scholar 

  14. Potter R et al (2008) Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncol 47(7):1325–1336

    Article  PubMed  Google Scholar 

  15. Koom WS SD (2007) Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer:preliminary demonstration of correlation between dose; volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int J Radiat Oncol Biol Phys 1(68(5)):1446–1454

    Google Scholar 

  16. Kirisits C et al (2006) The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys 65(2):624–630

    PubMed  Google Scholar 

  17. Dimopoulos JC et al (2006) Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. Int J Radiat Oncol Biol Phys 64(5):1380–1388

    PubMed  Google Scholar 

  18. Dimopoulos J et al (2009) Dose-volume histogram parameters and local tumor control in MR image guided cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pötter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturdza, A., Dimopoulos, J., Lettmayer, A. et al. Brachytherapie des Zervixkarzinoms. Gynäkologe 42, 941–948 (2009). https://doi.org/10.1007/s00129-009-2403-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-009-2403-1

Schlüsselwörter

Keywords

Navigation