Skip to main content

Advertisement

Log in

A Review on Hexachloro-1,3-butadiene (HCBD): Sources, Occurrence, Toxicity and Transformation

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Hexachloro-1,3-butadiene (HCBD) is a persistent organic pollutant listed in Annex A and C of the Stockholm Convention. This review summarized the sources, occurrence, toxicity, and transformation of HCBD in the environment. HCBD had no natural sources, and anthropogenic sources made it frequently detected in environmental medium, generally at µg L− 1 and µg kg− 1 in water and soil (or organism) samples, respectively. HCBD posed reproductive, genetic, and potentially carcinogenic toxicity to organisms, threatening human health and the ecosystem. Upon biodegradation, photodegradation and physicochemical degradation processes, HCBD can be degraded to a different extent. Nevertheless, further studies should be focused on the potential emission sources and the impact of HCBD on human health and the environment. Additionally, exploring removal technologies based on advanced oxidation and reduction are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao YX, Huang J, Cagnetta G et al (2019) Removal of F-538 as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction. Water Res 163:UNSP114907

    Google Scholar 

  • Birner G, Werner M, Ott MM et al (1995) Sex differences in hexachlorobutadiene biotransformation and nephrotoxicity. Toxicol Appl Pharm 132(2):203–212

    CAS  Google Scholar 

  • Booker RS, Pavlostathis SG (2000) Microbial reductive dechlorination of hexachloro-1,3-butadiene in a methanogenic enrichment culture. Water Res 34(18):4437–4445

    CAS  Google Scholar 

  • Bosma TNP, Cottaar FHM, Posthumus MA et al (1994) Comparison of reductive dechlorination of hexachloro-1,3-butadiene in rhine sediment and model systems with hydroxocobalamin. Environ Sci Technol 28(6):1124–1128

    CAS  Google Scholar 

  • Brüschweiler BJ, Märki W, Wülser R (2010) In vitro genotoxicity of polychlorinated butadienes (Cl4-Cl6). Mutat Res 703(2):227–227

    Google Scholar 

  • Chen X, Luo Q, Wang D et al (2015) Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China. Environ Pollut 206:64–72

    CAS  Google Scholar 

  • Cheng SS, Zhang XR, Yang X et al (2018) The multiple role of bromide ion in PPCPs degradation under UV/chlorine treatment. Environ Sci Technol 52(4):1806–1816

    CAS  Google Scholar 

  • Cord-Ruwisch R, James DL, Charles W (2009) The use of redox potential to monitor biochemical HCBD dechlorination. J Biotechnol 142(2):151–156

    CAS  Google Scholar 

  • Cristofori P, Sauer AV, Trevisan A (2015) Three common pathways of nephrotoxicity induced by halogenated alkenes. Cell Biol Toxicol 31(1):1–13

    CAS  Google Scholar 

  • de Weert JPA, Keijzer TJS, van Gaans PFM (2014) Lowering temperature to increase chemical oxidation efficiency: The effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products. Chemosphere 117(117):94–103

    Google Scholar 

  • Denis O, Btent S, Magdalena K et al (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51(1):104–122

    Google Scholar 

  • Derco J, Dudáš J, Valičková M et al (2015) Removal of micropollutants by ozone based processes. Chem Eng Process 94(SI):78–84

    CAS  Google Scholar 

  • Derco J, Valičková M, Šilhárová K et al (2013) Removal of selected chlorinated micropollutants by ozonation. Chem Pap 67(12):1585–1593

    CAS  Google Scholar 

  • Duprat P, Gradiski D (1978) Percutaneous Toxicity of Hexachlorobutadiene. Acta Pharmacol Et Toxicol 43(5):346–353

    CAS  Google Scholar 

  • EU (2011) European Union Report: study on waste related issues of newly listed POPs and candidate POPs. https://ec.europa.eu/environment/waste/studies/pdf/POP_Waste_2010.pdf. Accessed 13 Apr 2011

  • Green T, Lee R, Farrar D et al (2003) Assessing the health risks following environmental exposure to hexachlorobutadiene. Toxicol Lett 138(1):63–73

    CAS  Google Scholar 

  • Janz DM (2014) Hexachlorobutadiene. In: Abdolshi A (ed) Encyclopedia of toxicology, 3rd edn. Elsevier, Bethesda, pp 872–873

    Google Scholar 

  • Juang DE, Yuan CS, Hsueh SC et al (2009) Distribution of volatile organic compounds around a polluted river. Int J Environ Sci Technol 6(1):91–104

    CAS  Google Scholar 

  • Kociba RJ, Schwetz BA, Keyes DG et al (1977) Chronic toxicity and reproduction studies of hexachlorobutadiene in rats. Environ Health Persp 21:49–51

    CAS  Google Scholar 

  • Laska AL, Bartell CK, Laseter JL (1976) Distribution of hexachlorobenzene and hexachlorobutadiene in water, soil, and selected aquatic organisms along the lower Mississippi river, Louisiana. Bull Environ Contam Toxicol 15(5):535–542

    CAS  Google Scholar 

  • Lee CL, Song HJ, Fang MD (2000) Concentrations of chlorobenzenes, hexachlorobutadiene and heavy metals in surficial sediments of Kaohsiung coast, Taiwan. Chemosphere 41(6):889–899

    CAS  Google Scholar 

  • Lee CL, Song HJ, Fang MD (2005) Pollution topography of chlorobenzenes and hexachlorobutadiene in sediments along the Kaohsiung coast, Taiwan—a comparison of two consecutive years' survey with statistical interpretation. Chemosphere 58(11):1503–1516

    CAS  Google Scholar 

  • Lee M, Merle T, Rentsch D et al (2016) Abatement of polychoro-1,3-butadienes in aqueous solution by ozone, UV photolysis, and advanced oxidation processes (O3/H2O2 and UV/H2O2). Environ Sci Technol 51(1):497–505

    Google Scholar 

  • Lenoir D, Wehrmeier A, Sidhu SS et al (2001) Formation and inhibition of chloroaromatic micropollutants formed in incineration processes. Chemosphere 43(1):107–114

    CAS  Google Scholar 

  • Li M, Hao L, Sheng L et al (2008) Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1. Bioresour Technol 99(15):6878–6884

    CAS  Google Scholar 

  • Marek M, Plaza GYA, Grzegorz NCJ et al (2011) Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82(7):1017–1023

    Google Scholar 

  • Nikolaou AD, Golfinopoulos SK, Kostopoulou MN et al (2002) Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Res 36(11):2883–2890

    CAS  Google Scholar 

  • Pinto MI, Vale C, Sontag G et al (2016) Pathways of priority pesticides in sediments of coastal lagoons: the case study of Óbidos Lagoon, Portugal. Mar Pollut Bull 106(1–2):335–340

    CAS  Google Scholar 

  • Robles-Molina J, Gilbert-López B, García-Reyes JF et al (2010) Determination of organic priority pollutants in sewage treatment plant effluents by gas chromatography high-resolution mass spectrometry. Talanta 82(4):1318–1324

    CAS  Google Scholar 

  • Rodrigues R, Betelu S, Colombano S et al (2017) Reductive dechlorination of hexachlorobutadiene by Pd/Fe microParticles suspension in dissolved lactic acID polymers: degradation mechanism and kinetics. Ind Eng Chem Res 56(42):12092–12100

    CAS  Google Scholar 

  • Schwetz BA, Smith FA, Humiston CJ et al (1977) Results of a reproduction study in rats fed diets containing hexachlorobutadiene. Toxicol Appl Pharm 42(2):387–398

    CAS  Google Scholar 

  • Staples B, Howse M, Mason H et al (2003) Land contamination and urinary abnormalities: cause for concern? Occup Environ Med 60(7):463–467

    CAS  Google Scholar 

  • Sun J, Pan L, Zhan Y et al (2017) Spatial distributions of hexachlorobutadiene in agricultural soils from the Yangtze River Delta region of China. Environ Sci Pollut Res 25(1–2):1–8

    Google Scholar 

  • Tang Z, Huang Q, Cheng J et al (2014) Distribution and accumulation of hexachlorobutadiene in soils and terrestrial organisms from an agricultural area, East China. Ecotox Environ Safe 108:329–334

    CAS  Google Scholar 

  • Tang Z, Huang Q, Nie Z et al (2016) Levels and distribution of organochlorine pesticides and hexachlorobutadiene in soils and terrestrial organisms from a former pesticide-producing area in Southwest China. Stoch Environ Res Risk Assess 30(4):1249–1262

    Google Scholar 

  • Taylor KW, Caux P-Y, Moore DRJ (2003) An ecological risk assessment of hexachlorobutadiene. Hum Ecol Risk Assess 9(2):511–525

    CAS  Google Scholar 

  • Tirey DA, Taylor PH, Kasner J et al (1990) Gas phase formation of chlorinated aromatic compounds from the pyrolysis of tetrachloroethylene. Combust Sci Technol 74(1–6):137–157

    CAS  Google Scholar 

  • Trevisan A, Cristofori P, Beggio M et al (2005) Segmentary effects on the renal proximal tubule due to hexachloro-1,3-butadiene in rats: biomarkers related to gender. J Appl Toxicol 25(1):13–19

    CAS  Google Scholar 

  • USA (2016) Evaluation of new information for the addition of hexachlorobutadiene to Annex C of the stockholm convention. http://chm.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC11/POPRC11Followup/CommentsHCBD/tabid/5101/Default.aspx. Accessed 16 May 2016

  • van der Gon HD, van het Bolscher M, Visschedijk A et al (2007) Emissions of persistent organic pollutants and eight candidate POPs from UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmos Environ 41(40):9245–9261

    Google Scholar 

  • Wang L, Bie P, Zhang J (2018) Estimates of unintentional production and emission of hexachlorobutadiene from 1992 to 2016 in China. Environ Pollut 238:204–212

    CAS  Google Scholar 

  • Wang R, Zhang X, Xu QJ et al (2012) Health risk assessment of organic pollutants in typical township drinking water sources of Dongjiang River Basin. Acta Sci Circum 32(11):2874–2883 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yang X, Sun JL, Fu WJ (2016) PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters. Water Res 98:309–318

    CAS  Google Scholar 

  • Yee LH, Aagaard V, Johnstone A et al (2010) Development of a treatment solution for reductive dechlorination of hexachloro-1,3-butadiene in vadose zone soil. Biodegradation 21(6):947–956

    CAS  Google Scholar 

  • Zhang H, Wang Y, Sun C et al (2014) Levels and distributions of hexachlorobutadiene and three chlorobenzenes in biosolids from wastewater treatment plants and in soils within and surrounding a chemical plant in China. Environ Sci Technol 48(3):1525–1531

    CAS  Google Scholar 

  • Zhang L, Yang W, Xue L et al (2016) Distribution of hexachlorobutadiene in the air of tetrachloroethylene factory. In: Academic Forum and the 11th International conference of persistent organic pollutants in 2016, Xi'an, China, pp 173–175 (in Chinese)

  • Zhang X, Yang M, Sun X et al (2018) The experimental observation, mechanism and kinetic studies on the reaction of hexachloro-1,3-butadiene initiated by typical atmospheric oxidants. Sci Total Environ 627:256–263

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB45900) and the National Natural Science Foundation of China (21577178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Q., Wang, Y. & Yang, X. A Review on Hexachloro-1,3-butadiene (HCBD): Sources, Occurrence, Toxicity and Transformation. Bull Environ Contam Toxicol 104, 1–7 (2020). https://doi.org/10.1007/s00128-019-02744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02744-5

Keywords

Navigation