Skip to main content

Advertisement

Log in

Botanic Metallomics of Mercury and Selenium: Current Understanding of Mercury-Selenium Antagonism in Plant with the Traditional and Advanced Technology

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The antagonistic effect between mercury (Hg) and selenium (Se) is conclusively established in animals and human beings in the past decades. However, the underlying mechanisms of the interactions between Hg and Se in plants, as well as the metabolism of Hg–Se compounds in crops are still far from being understood. The botanic metallomics of Hg and Se mainly focuses on the translocation, transformation, and metabolism of Hg and Se in the environmental and botanic systems employing metallomics methods. An adequate understanding of the biological behavior of Hg and Se in plant is beneficial for sequestration of Hg and Se in soil–plant systems with high Hg and Se contamination. It can also provide a molecular mechanistic basis for Se supplementation in Se-deficient areas. Here, the key developments in current understanding of Hg and Se interactions in plants are reviewed. The metabolism and antagonism of Hg and Se in various plants, as well as the advanced analytical methods commonly used in this field, are summarized and discussed. As suggested, plant Hg and Se uptake, metabolism, and antagonism can be taken into account for detoxification and remediation strategies for the reduction of Hg and Se in the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afton SE, Caruso JA (2009) The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. J Anal At Spectrom 24:759–766

    Article  CAS  Google Scholar 

  • Arnold AP, Tan KS, Rabenstein DLJIC (1986) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorg Chem 25:2433–2437

    Article  CAS  Google Scholar 

  • Brown KM, Arthur JJPHN (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  Google Scholar 

  • Cai Y (2000) Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry. Trends Anal Chem 19:62–66

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Alvarez-Fernandez A, Sobrino-Plata J, Millan R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadia J, Hernandez LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Siebner H, LeDuc DL, Webb SM, Millan R, Andrews JC, Hernandez L (2013) Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47:3082–3090

    Article  CAS  Google Scholar 

  • Carvalho KM, Gallardo-Williams MT, Benson RF, Martin DF (2003) Effects of selenium supplementation on four agricultural crops. J Agric Food Chem 51:704–709

    Article  CAS  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  Google Scholar 

  • Dang F, Wang WX (2011) Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environ Sci Technol 45:3116–3122

    Article  CAS  Google Scholar 

  • Feng X, Li P, Qui G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2007) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol 42:326–332

    Article  CAS  Google Scholar 

  • Gai K, Hoelen TP, Hsu-Kim H, Lowry GV (2016) Mobility of four common mercury species in model and natural unsaturated soils. Environ Sci Technol 50:3342–3351

    Article  CAS  Google Scholar 

  • Gailer J (2007) Arsenic–selenium and mercury-selenium bonds in biology. Coord Chem Rev 251(1–2):234–254

    Article  CAS  Google Scholar 

  • Ganther H (1978) Modification of methylmercury toxicity and metabolism by selenium and vitamin E: possible mechanisms. Environ Health Perspect 25:71–76

    Article  CAS  Google Scholar 

  • Gao Y, Liu Y, Chen C, Li B, He W, Huang Y, Chai Z (2005) Combination of synchrotron radiation X-ray fluorescence with isoelectric focusing for study of metalloprotein distribution in cytosol of hepatocellular carcinoma and surrounding normal tissues. J Anal At Spectrom 20:473–475

    Article  CAS  Google Scholar 

  • Gao Y, Chen C, Chai Z (2007) Application of advanced nuclear analytical techniques for metalloproteomics. J Anal At Spectrom 22:856–866

    Article  CAS  Google Scholar 

  • Gao Y, Chen C, Luo Y, Li Y, Zhang Z, Zhao Y, Zhao B (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom 23:1121–1124

    Article  CAS  Google Scholar 

  • Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci USA 108:1479–1483

    Article  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  Google Scholar 

  • Hoffman DJ, Heinz GH (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ Toxicol Chem 17:161–166

    Article  CAS  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Logen S, Jacimovic R, Falnoga I, Qu L, Faganeli J, Drobne D (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ 304:231–256

    Article  CAS  Google Scholar 

  • Jin L-J, Guo P, Xu X-Q (1997) Effect of selenium on mercury methylation in anaerobic lake sediments. Bull Environ Contam Toxicol 59:994–999

    Article  CAS  Google Scholar 

  • Khan MA, Wang F (2010) Chemical demethylation of methylmercury by selenoamino acids. Chem Res Toxicol 23:1202–1206

    Article  CAS  Google Scholar 

  • Koeman J, Van de Ven W, De Goeij J, Tjioe P, Van Haaften J (1975) Mercury and selenium in marine mammals and birds. Sci Total Environ 3:279–287

    Article  CAS  Google Scholar 

  • Li YF, Zhao J, Li Y, Li H, Zhang J, Li B, Gao Y, Chen C, Luo M, Huang R, Li J (2015) The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant Soil 391:195–205

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, Zhang B, Liu Y, Xu X, Li YF, Li B, Gao Y, Chai Z (2016) The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant Soil 398:87–97

    Article  CAS  Google Scholar 

  • Li Y, Li H, Li YF, Zhao J, Guo J, Wang R, Li B, Zhang Z, Gao Y (2018) Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): a combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J Trace Elem Med Biol 50:435–440

    Article  CAS  Google Scholar 

  • Liu Y, Johs A, Bi L, Lu X, Hu H, Sun D, He J-Z, Gu B (2018) Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol 52:13110–13118

    Article  CAS  Google Scholar 

  • Luo H, Yin X, Jubb AM, Chen H, Lu X, Zhang W, Lin H, Yu HQ, Liang L, Sheng GP, Gu B (2017) Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environ Pollut 220:1359–1365

    Article  CAS  Google Scholar 

  • McNear DH Jr, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4:267–276

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Anderson CW, Wang J, Zhao L (2014) Localization and speciation of mercury in brown rice with implications for pan-Asian public health. Environ Sci Technol 48:7974–7981

    Article  CAS  Google Scholar 

  • Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea—implications for Se–Hg antagonism. J Anal At Spectrom 21:404–412

    Article  CAS  Google Scholar 

  • Palmisano F, Cardellicchio N, Zambonin P (1995) Speciation of mercury in dolphin liver: a two-stage mechanism for the demethylation accumulation process and role of selenium. Mar Environ Res 40:109–121

    Article  CAS  Google Scholar 

  • Parizek J, Ostadalova I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23:142–145

    Article  CAS  Google Scholar 

  • Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112

    Article  CAS  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Study of mercury-selenium (Hg–Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem Toxicol 34:883–886

    Article  CAS  Google Scholar 

  • Stein ED, Cohen Y, Winer AM (1996) Environmental distribution and transformation of mercury compounds. J Crit Rev Environ Sci Technol 26:1–43

    Article  CAS  Google Scholar 

  • Storelli M, Marcotrigiano G (2000) Fish for human consumption: risk of contamination by mercury. JFA Contam 17:1007–1011

    CAS  Google Scholar 

  • Storelli M, Ceci E, Marcotrigiano G (1998) Comparison of total mercury, methylmercury, and selenium in muscle tissues and in the liver of Stenella coeruleoalba (Meyen) and Caretta caretta (Linnaeus). Bull Environ Contam Toxicol 61:541–547

    Article  CAS  Google Scholar 

  • Tang W, Dang F, Evans D, Zhong H, Xiao L (2017) Understanding reduced inorganic mercury accumulation in rice following selenium application: selenium application routes, speciation and doses. Chemosphere 169:369–376

    Article  CAS  Google Scholar 

  • Thangavel P, Sulthana AS, Subburam V (1999) Interactive effects of selenium and mercury on the restoration potential of leaves of the medicinal plant, Portulaca oleracea Linn. Sci Total Environ 243–244:1–8

    Article  Google Scholar 

  • Wang P, Menzies NW, Lombi E, Mckenna BA, Jonge MD, Donner E, Blamey FPC, Ryan CG, Paterson DJ, Howrd DL, James SA, Kopittke PM (2013) Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Sci Total Environ 463–464:131–139

    Article  CAS  Google Scholar 

  • Wang Y, Dang F, Evans RD, Zhong H, Zhao J, Zhou D (2016) Mechanistic understanding of MeHg–Se antagonism in soil-rice systems: the key role of antagonism in soil. Sci Rep 6:19477

    Article  CAS  Google Scholar 

  • Wang Y, Dang F, Zhao J, Zhong H (2016) Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil. Environ Pollut 213:232–239

    Article  CAS  Google Scholar 

  • Xu X, Zhao J, Li Y, Fan Y, Zhu N, Gao Y, Li B, Liu H, Li YF (2016) Demethylation of methylmercury in growing rice plants: an evidence of self-detoxification. Environ Pollut 210:113–120

    Article  CAS  Google Scholar 

  • Yang D, Chen Y, Gunn J, Belzile N (2008) Selenium and mercury in organisms: Interactions and mechanisms. Environ Rev 16:71–92

    Article  CAS  Google Scholar 

  • Yathavakilla SKV, Caruso JA (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC–ICPMS. Anal Bioanal Chem 389:715–723

    Article  CAS  Google Scholar 

  • Yin Y, Liu J, He B, Shi J, Jiang G (2008) Simple interface of high-performance liquid chromatography–atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent. J Chromatogr A 1181:77–82

    Article  CAS  Google Scholar 

  • Yuan L, Yin X, Zhu Y, Li F, Huang Y, Liu Y, Lin Z (2012) Selenium in plants and soils, and selenosis in Enshi, China: implications for selenium biofortification. Phytoremediation and Biofortification. Springer, Dordrecht, pp 7–31

    Google Scholar 

  • Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46:10040–10046

    CAS  Google Scholar 

  • Zhao J, Gao Y, Li YF, Hu Y, Peng X, Dong Y, Li B, Chen C, Chai Z (2013) Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environ Res 125:75–81

    Article  CAS  Google Scholar 

  • Zhao J, Hu Y, Gao Y, Li Y, Li B, Dong Y, Chai Z (2013) Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium sativum). Metallomics 5:896–903

    Article  CAS  Google Scholar 

  • Zhao J, Li YF, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 6:1951–1957

    Article  CAS  Google Scholar 

  • Zhao J, Pu Y, Gao Y, Peng X, Li Y, Xu X, Li B, Zhu N, Dong J, Wu G, Li YF (2015) Identification and quantification of seleno-proteins by 2-DE-SR-XRF in selenium-enriched yeasts. J Anal At Spectrom 30:1408–1413

    Article  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided to JTZ and YXG by the National Natural Science Foundation of China (21777162, U1432241). Many thanks to BL 4W1B and 1W1B in BSRF, and BL15U and BL14W in SSRF for the previous synchrotron radiation experiments support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiating Zhao.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, this manuscript.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

All authors of this manuscript have directly participated in planning, execution, and analysis of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Li, Y., Liang, X. et al. Botanic Metallomics of Mercury and Selenium: Current Understanding of Mercury-Selenium Antagonism in Plant with the Traditional and Advanced Technology. Bull Environ Contam Toxicol 102, 628–634 (2019). https://doi.org/10.1007/s00128-019-02628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02628-8

Keywords

Navigation