Skip to main content
Log in

Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The heavy metal pollution in ecosystems is of increasing global concern. This study investigated firstly the responses of phytochelatins (PCs), glutathione (GSH) and other nonprotein thiols (NPT) in maize seedlings under vanadium (V), mercury (Hg) or their combined stress. With V or V–Hg combined stress, the contents of PCs, GSH and NPT in shoots and roots both increased with increasing the V stress level, and reached the maximum when the V stress level was 5 mg/L. Accumulation of V in all organs of maize seedlings was in sequence as follows: roots ≫ shoots, while Hg inhibited the accumulation of V. Results show that the root of plant has stronger tolerance to V, and the low V stress level can promote the synthesis of thiol groups to reduce the toxicity of Hg for plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnetoli M, Vooijs R, ten Bookum W, Galardi F, Gonnelli C, Gabbrielli R, Schat H, Verkleij JA (2008) Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. Environ Pollut 152:585–591

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297

    Article  CAS  Google Scholar 

  • Boulassel B, Sadeg N, Roussel O, Perrin M, Belhadj-Tahar H (2011) Fatal poisoning by vanadium. Forensic Sci Int 206:e79–e81

    Article  CAS  Google Scholar 

  • Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BH, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  Google Scholar 

  • Hou M, Hu C, Xiong L, Lu C (2013) Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis. Microchem J 110:575–578

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  Google Scholar 

  • Keltjens WG, van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize Seedlings (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    Article  CAS  Google Scholar 

  • Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581

    Article  CAS  Google Scholar 

  • Lazaridis NK, Jekel M, Zouboulis AI (2003) Removal of Cr(VI), Mo(VI), and V(V) ions from single metal aqueous solutions by sorption or nanofiltration. Sep Sci Technol 38:2201–2219

    Article  CAS  Google Scholar 

  • Lemos Batista B, Nigar M, Mestrot A, Alves Rocha B, Barbosa Júnior F, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  CAS  Google Scholar 

  • Li T, Di Z, Islam E, Jiang H, Yang X (2011) Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J Hazard Mater 185:818–823

    Article  CAS  Google Scholar 

  • Lu CM, Chau CW, Zhang JH (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis—assessment by chlorophyll fluorescence analysis. Chemosphere 41:191–196

    Article  CAS  Google Scholar 

  • Lyubenova L, Pongrac P, Vogel-Mikuš K, Kukec Mezek G, Vavpetič P, Grlj N, Kump P, Nečemer M, Regvar M, Pelicon P, Schröder P (2012) Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Metallomics 4:333–341

    Article  CAS  Google Scholar 

  • Majid NA, Phang IC, Darnis DS (2017) Characteristics of Pelargonium radula as a mercury bioindicator for safety assessment of drinking water. Environ Sci Pollut Res Int 24:22827–22838

    Article  CAS  Google Scholar 

  • Olness A, Nelsen T, Rinke J, Voorhees WB (2000) Ionic ratios and crop performance. I. Vanadate and phosphate on soybean. J Agron Crop Sci 185:145–151

    Article  CAS  Google Scholar 

  • Olness A, Palmquist D, Rinke J (2001) Ionic ratios and crop performance: II. Effects of interactions amongst vanadium, phosphorus, magnesium and calcium on soybean yield. J Agron Crop Sci 187:47–52

    Article  CAS  Google Scholar 

  • Olness A, Archer DW, Gesch RW, Rinke J (2002) Resin-extractable phosphorus, vanadium, calcium and magnesium as factors in maize (Zea mays L.) yield. J Agron Crop Sci 188:94–101

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, Hussain S (2015) Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536

    Article  CAS  Google Scholar 

  • Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS, Wicker T, Martinoia E (2014) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201

    Article  CAS  Google Scholar 

  • Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201

    Article  CAS  Google Scholar 

  • Tian L, Yang J, Alewell C, Huang JH (2014) Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth. Chemosphere 111:89–95

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759

    Article  CAS  Google Scholar 

  • Wang JF, Liu Z (1999) Effect of vanadium on the growth of soybean seedlings. Plant Soil 216:47–51

    Article  CAS  Google Scholar 

  • Weng BS, Xie XY, Weiss DJ, Liu JC, Lu HL, Yan CL (2012) Kandelia obovata (S, L.) Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull 64:2453–2460

    Article  CAS  Google Scholar 

  • Wójcik M, Pawlikowska-Pawlȩga B, Tukiendorf A (2009) Physiological and ultrastructural changes in Arabidopsis thaliana as affected by changed GSH level and Cu excess. Russ J Plant Physiol 56:820–829

    Article  CAS  Google Scholar 

  • Yang J, Wang M, Jia Y, Gou M, Zeyer J (2017a) Toxicity of vanadium in soil on soybean at different growth stages. Environ Pollut 231:48–58

    Article  CAS  Google Scholar 

  • Yang J, Teng Y, Wu J, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai Y (2017b) Current status and associated human health risk of vanadium in soil in China. Chemosphere 171:635–643

    Article  CAS  Google Scholar 

  • Zhan FD, Li B, Jiang M, Qin L, Wang JX, He YM, Li Y (2017) Effects of a root-colonized dark septate endophyte on the glutathione metabolism in maize plants under cadmium stress. J Plant Interact 12:421–428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (41561077; 41161076) and the Natural Science Foundation of Guangxi (2015GXNSFFA139005) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, M., Li, M., Yang, X. et al. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings. Bull Environ Contam Toxicol 102, 425–431 (2019). https://doi.org/10.1007/s00128-019-02553-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02553-w

Keywords

Navigation