Skip to main content
Log in

Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Dachang Sn-polymetallic ore district in South China is the second largest tin district in the world with a tin reserve of over one million tonnes. Zn-Cu skarn and stratiform, massive, and vein Sn-Pb-Zn ores are all present in this district. This has led to a debate as to whether the Sn orebodies were formed by Cretaceous magmatic-hydrothermal replacement or Devonian submarine exhalative-hydrothermal sedimentation. Here, we present a systematic investigation of the major, trace element, and boron isotopic compositions of different types of tourmaline in the Dachang ore district. Tourmaline disseminated in the Longxianggai granite and pegmatite veins belongs to the schorl series and has high contents of Li, Zn, and Ga. The δ11B value of primary magma of the Longxianggai granite is estimated to be about −13‰, close to the global average δ11B value (−11‰) for S-type granites. Tourmaline from quartz-tourmaline veins in the Longxianggai granite has similar chemical composition to the magmatic tourmaline and likely formed from hydrothermal fluids exsolved from the evolved granitic melt. The δ11B value of the initial hydrothermal fluids is also calculated to be about −13‰. Tourmalines from the skarn and sulfide ores in the Lamo deposit have higher Mg/(Mg+Fe) and lower Na/(Na+Ca) ratios and higher contents of Be, Ge, Sr, and Sn than magmatic tourmaline. These patterns likely reflect input of elements derived from the host Devonian limestone. The δ11B values of the hydrothermal fluids are estimated to be between −13 and −10‰, suggesting evolved magmatic-hydrothermal fluids related to the Longxianggai granite. Tourmalines from the stratiform and vein ores in the Changpo-Tongkeng deposit are extremely Mg-rich and mostly belong to the dravite series. They have high contents of Sc, V, Cr, Sr, and Sn and show positive Eu anomalies. The δ11B values of these B- and Sn-rich fluids are estimated to be between −15 and −10‰, suggesting that the fluids also have a magmatic-hydrothermal origin. These fluids are most likely derived from the same granitic magma source, but may have interacted with the Devonian volcanic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adlakha EE, Hattori K, Davis WJ, Boucher B (2017) Characterizing fluids associated with the McArthur River U deposit, Canada, based on tourmaline trace element and stable (B, H) isotope compositions. Chem Geol 466:417–435

    Article  Google Scholar 

  • Albert C, Lana C, Gerdes A, Schannor M, Narduzzi F, Queiroga G (2018) Archean magmatic-hydrothermal fluid evolution in the Quadrilátero Ferrífero (SE Brazil) documented by B isotopes (LA MC-ICPMS) in tourmaline. Chem Geol 481:95–109

    Article  Google Scholar 

  • Bone Y (1988) The geological setting of tourmalinite at Rum Jungle, N.T., Australia-Genetic and economic implications. Mineral Deposit 23:34–41

    Article  Google Scholar 

  • Boynton WL (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Cai MH, He LQ, Liu GQ, Wu DC, Huang HM (2006) SHRIMP zircon U-Pb dating of the intrusive rocks in the Dachang tin-polymetallic ore field, Guangxi and their geological significance. Geol Rev 52:409–414 (in Chinese with English abstract)

    Google Scholar 

  • Cai MH, Mao JW, Liang T, Pirajno F, Huang HL (2007) The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: clues from fluid inclusions and He isotope systematics. Mineral Deposit 24:613–626

    Google Scholar 

  • Chen YC, Huang MZ, Xu J, Hu YZ, Tang SH, Li YQ, Meng LK (1993) Tin deposits of Dachang. Geological Publishing House, Beijing, pp 1–361 (in Chinese with English abstract)

    Google Scholar 

  • Clarke DB, Reardon NC, Chatterjee AK, Gregorie DC (1989) Tourmaline composition as a guide to mineral exploration: a reconnaissance study from Nova Scotia using discriminant function analysis. Econ Geol 84:1921–1935

    Article  Google Scholar 

  • Codeço MS, Weis P, Trumbull RB, Pinto F, Lecumberri-Sanchez P, Wilke FDH (2017) Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chem Geol 468:1–16

    Article  Google Scholar 

  • Dingwell DB, Pichavant M, Holtz F (1996) Experimental studies of boron in granitic melts. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, petrology and geochemistry, Rev Mineral, vol 33, pp 331–386

    Chapter  Google Scholar 

  • Duchoslav M, Marks MAW, Drost K, McCammon C, Marschall HR, Wenzel T, Markl G (2017) Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: the Cornubian Batholith, SW England. Ore Geol Rev 83:215–234

    Article  Google Scholar 

  • Dyar MD, Wiedenbeck M, Robertson D, Cross LR, Delaney JS, Ferguson K, Francis CA, Grew ES, Guidotti CV, Hervig RL, Hughes JM, Husler J, Leeman W, McGuire AV, Rhede D, Rothe H, Paul RL, Richards I, Yates M (2001) Reference materials for the microanalysis of light elements. Geostand Newsletter 25:441–463

    Article  Google Scholar 

  • Fan DL, Zhang T, Ye J, Pašava J, Kribek B, Dobes P, Varrin I, Zak K (2004) Geochemistry and origin of tin-polymetallic sulfide deposits hosted by the Devonian black shale series near Dachang, Guangxi, China. Ore Geol Rev 24:103–120

    Article  Google Scholar 

  • Fu M, Changkakoti A, Krouse HR, Gray J, Kwak TAP (1991) An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, China. Econ Geol 86:1683–1703

    Article  Google Scholar 

  • Fu M, Kwak TAP, Mernagh TP (1993) Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People’s Republic of China. Econ Geol 88:283–300

    Article  Google Scholar 

  • Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Luo M, Zhang LC (2018) Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U-Pb ages and trace element compositions. Ore Geol Rev 95:863–879

    Article  Google Scholar 

  • Han F, Zhao RS, Shen JZ, Hutchinson RW, Jiang SY, Chen HD (1997) Geology and origin of ores in the Dachang tin-polymetallic ore field. Geological Publishing House, Beijing, pp 1–213 (in Chinese with English abstract)

    Google Scholar 

  • Harlaux M, Mercadier J, Marignac C, Villeneuve J, Mouthier B, Cuney M (2019) Origin of the atypical Puy-les-Vignes W breccia pipe (Massif Central, France) constrained by trace element and boron isotopic composition of tourmaline. Ore Geol Rev 114:103132

    Article  Google Scholar 

  • Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontboté L (2020) Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: the world-class San Rafael tin (-copper) deposit. Peru. Economic Geology 115:1665–1697. https://doi.org/10.5382/econgeo.4762

    Article  Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin(-tungsten) ore deposits. Econ Geol 85:457–481

    Article  Google Scholar 

  • Hennigh Q, Hutchinson RW (1999) Cassiterite at Kidd Creek: an example of volcanogenic massive sulfide-hosted tin mineralization. Econ Geol Monograph 10:431–440

    Google Scholar 

  • Henry DJ, Dutrow BL (2018) Tourmaline studies through time: contributions to scientific advancements. J Geosci 63:77–98

    Article  Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Henry DJ, NováK M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Mineral 87:769–774

    Article  Google Scholar 

  • Hong W, Cooke DR, Zhang L, Fox N, Thompson J (2017) Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: characteristics, origins and implications for tin mineralization. Am Mineral 102:876–899

    Article  Google Scholar 

  • Ito T, Plimer IR (1987) The significance of tourmaline in the stratiform Dome Rock deposit, Australia. Mining Geol 37:403–418

    Google Scholar 

  • Jiang SY (2001) Boron isotope geochemistry of hydrothermal ore deposits in China: a preliminary study. Physic Chem Earth (A) 26:851–858

    Article  Google Scholar 

  • Jiang SY, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93:47–67

    Article  Google Scholar 

  • Jiang SY, Han F, Shen JZ, Palmer MR (1999) Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province. P. R. China. Chem Geol 157:49–67

    Article  Google Scholar 

  • Jiang SY, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia. Chem Geol 188:229–247

    Article  Google Scholar 

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterization of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29:285–302

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Kaliwoda M, Marschall HR, Marks MAH, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125:51–64

    Article  Google Scholar 

  • Kalliomäki H, Wagner T, Fusswinkel T, Sakellaris G (2017) Major and trace element geochemistry of tourmalines from Archean orogenic gold deposits: proxies for the origin of gold mineralizing fluids? Ore Geol Rev 91:906–927

    Article  Google Scholar 

  • Lambert-Smithm JS, Rocholl A, Treloar PJ, Lawrence DM (2016) Discriminating fluid source regions in orogenic gold deposits using B-isotopes. Geochim Cosmochim Acta 194:57–76

    Article  Google Scholar 

  • Leake RC, Fletcher CJN, Haslam HW, Khan B (1989) Origin and tectonic setting of stratabound tungsten mineralization within the Hindu Kush of Pakistan. J Geol Society (London) 146:1003–1016

    Article  Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Lecture Notes in Earth Sciences 32. Springer, Berlin, 1–211

  • Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH (2009) Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precam Res 174:117–128

    Article  Google Scholar 

  • Li X, Zhao KD, Jiang SY, Palmer MR (2019) In-situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geol Rev 105:223–235

    Article  Google Scholar 

  • Li YC, Chen HW, Wei HZ, Jiang SY, Palmer MR, van de Ven TGM, Hohl S, Lu JJ, Ma J (2020) Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: a density functional theory study. Chem Geol 536:119466

    Article  Google Scholar 

  • Liang T, Chen YC, Wang DH, Cai MH (2008) The geological and geochemical characteristics of Dachang tin-polymetallic deposit, Guangxi. Geological Publishing House, Beijing, pp 1–235 (in Chinese with English abstract)

    Google Scholar 

  • Liang T, Wang DH, Hou KJ, Li HQ, Huang HM, Cai MH, Wang DM (2011) LA-MC-ICP-MS zircon U-Pb dating of Longxianggai pluton in Dachang of Guangxi and its geological significance. Acta Petrol Sinica 27:1624–1636 (in Chinese with English abstract)

    Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Liu CM, Qin DX, Yan YF (2012) The discovery of the intermediate and basic volcanic rocks in the Dachang ore deposit, Guangxi, and its geological significance. Acta Petrol Mineral 31(1):73–78 (in Chinese with English abstract)

    Google Scholar 

  • London D, Morgan GB, Wolf MB (1996) Boron in granitic rocks and their contact aureoles. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, Petrology and Geochemistry. Rev Mineral, vol 33, pp 299–330

    Chapter  Google Scholar 

  • Maner JL IV, London D (2018) Fractionation of the isotopes of boron between granitic melt and aqueous solution at 700oC and 800oC (200 MPa). Chem Geol 489:16–27

    Article  Google Scholar 

  • Mao JW (1995) Tourmalinite from northern Guangxi, China. Mineral Deposit 30:235–245

    Article  Google Scholar 

  • Mao JW, Cheng YB, Guo GL, Yang ZX, Feng JR (2008) Gejiu tin polymetallic ore-field: deposit model and discussion for several points concerned. Acta Geol Sinica 82(11):1455–1467 (in Chinese with English abstract)

    Google Scholar 

  • Mercadier J, Richard A, Cathelineau M (2012) Boron- and magnesium-rich marine brines at the origin of giant unconformity-related uranium deposits: 11B evidence from Mg-tourmalines. Geology 40:231–234

    Article  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267

    Article  Google Scholar 

  • Morgan GB (2016) A spreadsheet for calculating normative mole fractions of end-member species for Na-Ca-Li-Fe2+-Mg-Al tourmalines from electron microprobe data. Am Mineral 101:111–119

    Article  Google Scholar 

  • Palmer MR (1991) Boron isotope systematics of hydrothermal fluids and tourmalines: a synthesis. Chem Geol 94:111–121

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) The boron isotope composition of tourmalines from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  • Palmer MR, London D, Morgan GBVI, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: a temperature- and pressure-dependent isotopic system. Chem Geol 101:123–129

    Google Scholar 

  • Pan JH, Amstutz GC, Moh C (1993) Stratabound anorthites in the Dachang Sn-polymetallic ore field, Guangxi, China. Chinese J Geochem 12:261–269

    Article  Google Scholar 

  • Petersen EU (1986) Tin in volcanogenic massive sulfide deposits: an example from the Geco mine, Manitouwadge district, Ontario, Canada. Econ Geol 81:323–342

    Article  Google Scholar 

  • Plimer IR (1986) Tourmalinites from the Golden Dyke dome, northern Australia. Mineral Deposit 21:263–270

    Article  Google Scholar 

  • Plimer IR (1987) The association of tourmalinite with stratiform scheelite deposits. Mineral Deposit 22:282–291

    Article  Google Scholar 

  • Plimer IR (1994) Strata-bound scheelite in meta-evaporites, Broken Hill, Australia. Econ Geol 89:423–437

    Article  Google Scholar 

  • Plimer IR, Lees TC (1988) Tourmaline-rich rocks associated with the submarine hydrothermal Rosebery Zn-Pb-Cu-Ag-Au deposit and granites in western Tasmania, Australia. Mineral Petrol 38:81–103

    Article  Google Scholar 

  • Raith JG (1988) Tourmaline rocks associated with stratabound scheelite mineralization in the Austroalpine Crystalline Complex, Austria. Mineral Petrol 39:265–288

    Article  Google Scholar 

  • Ranta JP, Hanski E, Cook N, Lahaye Y (2017) Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline. Mineral Deposit 52:733–746

    Article  Google Scholar 

  • Relvas JMRS, Tassinari CC, Munhá J, Barriga FJ (2001) Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): strontium, neodymium and lead isotope evidence. Mineral Deposit 36:416–427

    Article  Google Scholar 

  • Ren SK, Walshe JL, Paterson RG, Both RA, Andrew A (1995) Magmatic and hydrothermal history of the porphyry-style deposits of the Ardlethan tin field, New South Wales, Australia. Econ Geol 90:1620–1645

    Article  Google Scholar 

  • Sciuba M, Beaudoin G, Makvandi S (2020) Chemical composition of tourmaline in orogenic gold deposits. Mineral Deposit doi. https://doi.org/10.1007/s00126-020-00981-x

  • Shibu T (1984) Chemical compositions of tourmaline in the vein-type tungsten deposits in the Kaneuchi mine, Japan. Mineral Deposit 19:298–303

    Google Scholar 

  • Siegel K, Wagner T, Trumbull RB, Jonsson E, Matalin G, Wälle M, Heinrich CA (2016) Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (northern Sweden). Chem Geol 421:1–16

    Article  Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, petrology and geochemistry, Rev Mineral, vol 33, pp 559–643

    Chapter  Google Scholar 

  • Slack JF, Coad PR (1989) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Can J Earth Sci 26:694–715

    Article  Google Scholar 

  • Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Article  Google Scholar 

  • Slack JF, Palmer MR, Stevens BPJ (1989) Non-marine evaporites in the Proterozoic Broken Hill Block, Australia: evidence from boron isotopes and implications for ore genesis. Nature 342:913–916

    Article  Google Scholar 

  • Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill District. Econ Geol 88:505–541

    Article  Google Scholar 

  • Su ZK, Zhao XF, Li XC, Zhou MF (2016) Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: the worldclass Dahongshan Fe-Cu deposit in SW China. Chem Geol 441:265–279

    Article  Google Scholar 

  • Su ZK, Zhao XF, Zeng LP, Zhao KD, Hofstra AH (2019) Tourmaline boron and strontium isotope systematics reveal magmatic fluid pulses and external fluid influx in a giant iron oxide-apatite (IOA) deposit. Geochim Cosmochim Acta 259:233–252

    Article  Google Scholar 

  • Tonarini S, Pennisi M, Adorni-Braccesi A, Dini A, Ferrara G, Gonfiantini R, Wiedenbeck M, Gröning M (2003) Intercomparison of boron isotope and concentration measurements. Part I: selection, preparation and homogeneity tests of the intercomparison materials. Geostand Geoanaly Res 27:21–39

    Article  Google Scholar 

  • Trumbull RB, Slack JF (2018) Boron isotopes in the continental crust: granites, pegmatites, felsic volcanic rocks, and related ore deposits. In: Marschall H, Foster G (eds) Boron isotopes: the fifth element. Springer, Switzerland, pp 249–272

    Chapter  Google Scholar 

  • Trumbull RB, Krienitz MS, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Mineral Petrol 155:1–18

    Article  Google Scholar 

  • Trumbull RB, Beurlen H, Wiedenbeck M, Soares DR (2013) The diversity of B-isotope variations in tourmaline form rare-element pegmatites in the Borborema Province of Brazil. Chem Geol 352:47–62

    Article  Google Scholar 

  • Trumbull RB, Garda GM, Xavier RP, Cavalcanti JAD, Codeço MS (2019) Tourmaline in the Passagem de Mariana gold deposit (Brazil) revisited: major-element, trace-element and B-isotope constraints on metallogenesis. Mineral Deposit 54:395–414

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Dutrow BL (2011) Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past. Elements 7:327–332

    Article  Google Scholar 

  • Zhao KD, Jiang SY (2007) Rare earth element and yttrium analyses of sulfides from the Dachang Sn-polymetallic ore field, Guangxi Province, China: implication for ore genesis. Geochem J 41:121–134

    Article  Google Scholar 

  • Zhao KD, Jiang SY, Xiao HQ, Ni P (2002) Origin of ore-forming fluids of the Dachang Sn-polymetallic ore deposit: evidence from helium isotopes. Chinese Sci Bull 47:1041–1045

    Article  Google Scholar 

  • Zhao KD, Jiang SY, Ni P, Ling HF, Jiang YH (2007) Sulfur, lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic ore district in South China: implication for ore genesis. Mineral Petrol 89:251–273

    Article  Google Scholar 

  • Zhao H, Su W, Xie P, Shen N, Cai J, Luo M, Li J, Bao Z (2018) Re-Os dating of molybdenite and in-situ Pb isotopes of sulfides from the Lamo Zn-Cu deposit in the Dachang tin-polymetallic ore field, Guangxi, China. Acta Geochimica 37:384–394

    Article  Google Scholar 

  • Zhao HD, Zhao KD, Palmer MR, Jiang SY (2019) In-situ elemental and boron isotopic variations of tourmaline from the Sanfang granite, South China: insights into magmatic-hydrothermal evolution. Chem Geol 504:190–204

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Key R & D Plan projects (No. 2017YFC061404 and No. 2016YFC0600205), the National Natural Science Foundation of China projects (No. 41673043, No. 91755208), and the special fund from the State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR03-2). The authors are very grateful to Editor-in-Chief Prof. Georges Beaudoin and Associate Editor Prof. Robert Linnen for the editorial handling and constructive comments of this paper. Dr. Matthieu Harlaux, Dr. Rongqing Zhang, and an anonymous reviewer are thanked for their constructive reviews, which improved this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui-Dong Zhao.

Additional information

Editorial handling: R. Linnen

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Revised version 2 submitted to Mineralium Deposita)

Supplementary information

ESM 1

(XLSX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, KD., Zhang, LH., Palmer, M.R. et al. Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids. Miner Deposita 56, 1589–1608 (2021). https://doi.org/10.1007/s00126-021-01045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01045-4

Keywords

Navigation