Skip to main content
Log in

Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, South China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Gutaishan deposit is a slate-hosted lode Au–Sb deposit in the Xiangzhong Sb–Au metallogenic province, South China. The deposit has a proven reserve of ca. 9 -t gold at an average grade of 13-g/t and contains 2500-t Sb. The deposit represents the product of a complex ore-forming process, comprising four different stages, of which the third stage is the main gold–stibnite bearing stage. Scanning electron microscopy, electron probe microanalysis, and laser ablation inductively coupled plasma-mass spectrometry were used to investigate the occurrence of visible gold and the distribution of invisible gold in pyrite and arsenopyrite. Visible gold displays textural complexity with four distinct categories defined and assumed to have formed directly precipitated from ore-forming fluid and remobilized from pyrite and arsenopyrite. Pyrite and arsenopyrite occur as ten and four texturally distinct subtypes; all host invisible gold, which is lattice-bound. Trace element mapping of selected pyrite and arsenopyrite grains reveals a marked compositional zoning with respect to Au and other elements in both minerals. Observed decoupled behavior between Au and As in some grains contradicts the paradigm of coupled Au and As substitution. Evidence suggests that the Gutaishan deposit likely represents an evolving Au–Sb mineralization event recorded by the complex texture and geochemical signatures of visible gold, sulfides, and sulfosalts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraitis PK, Pattrick RAD, Vaughan DJ (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process 74:41–59

    Article  Google Scholar 

  • Ashley PM, Creagh CJ, Ryan CG (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold–antimony deposits, NSW, Australia. Miner Deposita 35:285–301

    Article  Google Scholar 

  • Belousov I, Large RR, Meffre S, Danyushevsky LV, Steadman J, Beardsmore T (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: implications for gold and copper exploration. Ore Geol Rev 79:474–499

    Article  Google Scholar 

  • Bi SJ, Li JW, Zhou MF, Li ZK (2011) Gold distribution in As–deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern North China Craton. Miner Deposita 46:925–941

    Article  Google Scholar 

  • Cabri LJ, Newville M, Gordon RA, Crozier ED, Sutton SR, McMahon G, Jiang DT (2000) Chemical speciation of gold in arsenopyrite. Can Mineral 38:1265–1281

    Article  Google Scholar 

  • Cathelineau M, Boiron MC, Holliger P, Marion P, Denis M (1989) Gold in arsenopyrites: crystal chemistry, location and state, physical and chemical conditions of deposition. Econ Geol Monograph 6:328–341

    Google Scholar 

  • Chen WF, Chen PR, Huang HY, Ding X, Sun T (2007) Geochronological and geochemical study of Baimashan granite and its xenoliths. Sci China Ser D 37:873–893 (in Chinese)

    Google Scholar 

  • Chu Y, Lin W, Faure M, Wang Q, Ji W (2012) Phanerozoic tectonothermal events of the Xuefengshan Belt, central South China: implications from U–Pb age and Lu–Hf determinations of granites. Lithos 150:243–255

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ, Spry PG (2006) Preface—special issue: telluride and selenide minerals in gold deposits—how and why? Mineral Petrol 87:163–169

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B (2012) Gold–telluride nanoparticles revealed in arsenic-free pyrite. Am Mineral 97:1515–1518

    Article  Google Scholar 

  • Cook NJ, Chryssoulis SL (1990) Concentrations of “invisible gold” in the common sulfides. Can Mineral 28:1–16

    Google Scholar 

  • Cook NJ, Ciobanu CL, Mao J (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem Geol 264:101–121

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Meria D, Silcock D, Wade B (2013) Arsenopyrite–pyrite association in an orogenic gold ore: tracing mineralization history from textures and trace elements. Econ Geol 108:1273–1283

    Article  Google Scholar 

  • Deditius AP, Utsunomiya S, Ewing RC, Chryssoulis SL, Venter D, Kesler SE (2009) Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 37:707–710

    Article  Google Scholar 

  • Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42:32–46

    Article  Google Scholar 

  • Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J, Ewing RC (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim Cosmochim Acta 140:644–670

    Article  Google Scholar 

  • Fleet ME, Mumin AH (1997) Gold–bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. Am Mineral 82:182–193

    Article  Google Scholar 

  • Fougerouse D, Micklethwaite S, Tomkins AG, Mei Y, Kilburn M, Guagliardo P, Fisher LA, Halfpenny A, Gee M, Paterson D, Howard DL (2016a) Gold remobilisation and formation of high grade ore shoots driven by dissolution–reprecipitation replacement and Ni substitution into auriferous arsenopyrite. Geochim Cosmochim Acta 178:143–159

    Article  Google Scholar 

  • Fougerouse D, Reddy SM, Saxey DW, Rickard WD, Van Riessen A, Micklethwaite S (2016b) Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: evidence from atom probe microscopy. Am Mineral 101:1916–1919

    Article  Google Scholar 

  • Fu SL, Hu RZ, Bi XW, Chen YW, Yang JH, Huang Y (2015) Origin of Triassic granites in central Hunan province, South China: constraints for zircon U–Pb ages and Hf–O isotopes. Int Geol Rev 57:97–111

    Article  Google Scholar 

  • Genkin AD, Bortnikov NS, Cabri LJ, Wagner FE, Stanley CJ, Safonov YG, Mcmahon G, Fridel J, Kerzin AL, Gamyanin GN (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ Geol 93:463–487

    Article  Google Scholar 

  • Geological Map of Hunan Province, the People’s Republic of China 1: 500000 (2010) Geological Publishing House, Beijing (in Chinese)

  • Goldfarb RJ, Baker T, Dubé B, Groves DI, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100th Anniv Vol:407–450

  • Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol 98:1–29

    Google Scholar 

  • Hagemann SG, Lüders V (2003) P–T–X conditions of hydrothermal fluids and precipitation mechanism of stibnite–gold mineralization at the Wiluna lode–gold deposits, Western Australia: conventional and infrared microthermometric constraints. Mineral Deposita 38:936–952

    Article  Google Scholar 

  • Hu RZ, Zhou MF (2012) Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue. Mineral Deposita 47:579–588

    Article  Google Scholar 

  • Hu RZ, Mao JW, Hua RM, Fan WM (2015) Intra-continental mineralization of South China Craton. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Hu RZ, Fu SL, Xiao JF (2016) Major scientific problems on low-temperature metallogenesis in South China. Acta Petrologica Sin 32:3239–3251 (in Chinese with English abstract)

    Google Scholar 

  • Hu RZ, Chen WT, Xu DR, Zhou MF (2017a) Reviews and new metallogenic models of mineral deposits in South China: an introduction. J Asian Earth Sci 137:1–8

    Article  Google Scholar 

  • Hu RZ, Fu SL, Huang Y, Zhou MF, Fu SH, Zhao CH, Wang YJ, Bi XW, Xiao JF (2017b) The giant South China Mesozoic low–temperature metallogenic domain: reviews and a new geodynamic model. J Asian Earth Sci 137:9–34

    Article  Google Scholar 

  • Jean GE, Bancroft GM (1985) An XPS and SEM study of gold deposition at low temperatures on sulphide mineral surfaces: concentration of gold by adsorption–reduction. Geochim Cosmochim Acta 49:979–987

    Article  Google Scholar 

  • Kalinin YA, Naumov EA, Borisenko AS, Kovalev KR, Antropova AI (2015) Spatial–temporal and genetic relationships between gold and antimony mineralization at gold–sulfide deposits of the Ob–Zaisan folded zone. Geol Ore Deposits 57:157–171

    Article  Google Scholar 

  • Krupp RE (1988) Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350 °C. Geochim Cosmochim Acta 52:3005–3015

    Article  Google Scholar 

  • Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang ZS (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ Geol 102:1233–1267

    Article  Google Scholar 

  • Li W, Xie GQ, Zhang ZY, Zhang XK (2016a) Constraint on the genesis of Gutaishan gold deposit: evidence from fluid inclusion and C–H–O isotopes. Acta Petrologica Sin 32:3489–3506 (in Chinese with English abstract)

    Google Scholar 

  • Li LM, Lin SF, Xing GF, Davis DW, Jiang Y, Davis W, Zhang YJ (2016b) Ca. 830 Ma back-arc type volcanic rocks in the eastern part of the Jiangnan orogen: implications for the Neoproterozoic tectonic evolution of South China block. Precambr Res 275:209–224

    Article  Google Scholar 

  • Liu JS (1996) Relationship between felsic dikes and antimony–gold mineralization in Central Hunan. Geological Exploration for Non-Ferrous Metals 5:321–326 (in Chinese with English abstract)

    Google Scholar 

  • Ma DS, Pan JY, Xie QL, He J (2002) Ore source of Sb (Au) deposits in CenterHunan: I. Evidences of trace elements and experimental geochemistry. Mineral Deposits 3:366–376 (in Chinese with English abstract)

    Google Scholar 

  • Mao JW, Cheng YB, Chen MH, Pirajno F (2013) Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineral Deposita 48:267–294

    Article  Google Scholar 

  • Mikucki EJ (1998) Hydrothermal transport and depositional processes in Archean lode-gold systems: a review. Ore Geol Rev 13:307–321

    Article  Google Scholar 

  • Morey AA, Tomkins AG, Bierlein FP, Weinberg RF, Davidson GJ (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, Western Australia. Econ Geol 103:599–614

    Article  Google Scholar 

  • Mukherjee I, Large RR (2017) Application of pyrite trace element chemistry to exploration for SEDEX style Zn–Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geol Rev 81:1249–1270

    Article  Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–559

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley-Interscience, New York, pp 509–567

    Google Scholar 

  • Okrugin VM, Andreeva E, Etschmann B, Pring A, Li K, Zhao J, Griffiths G, Lumpkin GR, Triant G, Brugger J (2014) Microporous gold: comparison of textures from nature and experiments. Am Mineral 99:171–1174

    Article  Google Scholar 

  • Palenik CS, Utsunomiya S, Reich M, Kesler SE, Wang L, Ewing RC (2004) Invisible gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit. Am Mineral 89:1359–1366

    Article  Google Scholar 

  • Palyanova G, Karmanov N, Savva N (2014) Sulfidation of native gold. Am Mineral 99:1095–1103

    Article  Google Scholar 

  • Phillips GN, Evans KA (2004) Role of CO2 in the formation of gold deposits. Nature 429:860–863

    Article  Google Scholar 

  • Pokrovski GS, Kara S, Roux J (2002) Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochim Cosmochim Acta 66:2361–2378

    Article  Google Scholar 

  • Rao JR, Wang JH, Cao YZ (1993) Deep structure in Hunan. Hunan Geology 12(S1):1–101 (in Chinese with English abstract)

    Google Scholar 

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing R (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796

    Article  Google Scholar 

  • Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochim Cosmochim Acta 104:42–62

    Article  Google Scholar 

  • Simon G, Huang H, Penner-Hahn J, Kesler SE, Kao L (1999) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am Mineral 84:1071–1079

    Article  Google Scholar 

  • Starling A, Gilligan JM, Carter AHC, Foster RP, Saunders RA (1989) High–temperature hydrothermal precipitation of precious metals on the surface of pyrite. Nature 340:298–300

    Article  Google Scholar 

  • Su WC, Xia B, Zhang HT, Zhang XC, Hu RZ (2008) Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation. Ore Geol Rev 33:667–679

    Article  Google Scholar 

  • Su WC, Zhang HT, Hu RZ, Ge X, Xia B, Chen YY, Zhu C (2012) Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes. Mineral Deposita 47:653–662

    Article  Google Scholar 

  • Sung YH, Brugger J, Ciobanu CL, Pring A, Skinner W, Nugus M (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner Deposita 44:765–791

    Article  Google Scholar 

  • Wagner T, Cook NJ (2000) Late–Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems. Mineral Deposita 35:206–222

    Article  Google Scholar 

  • Wagner T, Klemd R, Wenzel T, Mattsson B (2007) Gold upgrading in metamorphosed massive sulfide ore deposits: direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold. Geology 35:775–778

    Article  Google Scholar 

  • Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH, Peng TP (2007) Geochronlogical, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in Hunan province. Lithos 96:475–502

    Article  Google Scholar 

  • Williams-Jones AE, Norman C (1997) Controls of mineral parageneses in the system Fe–Sb–S–O. Econ Geol 92:308–324

    Article  Google Scholar 

  • Yang LQ, Deng J, Wang ZL, Guo LN, Li RH, Groves DI, Danyushevsky LV, Zhang C, Zheng XL, Zhao H (2016) Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: implications for gold source and deposition in a brittle epizonal environment. Econ Geol 111:105–126

    Article  Google Scholar 

  • Yu JG (1998) Alteration features and prospecting direction in the Gutaishan gold deposit, Hunan. Hunan Geol 3:155–159 (in Chinese with English abstract)

    Google Scholar 

  • Zhang YZ, Wang YJ, Zhang YH, Zhang AM (2015) Neoproterozoic assembly of the Yangtze and Cathaysia blocks: evidence from the Cangshuipu Group and associated rocks along the Central Jiangnan Orogen, South China. Precambr Res 269:18–30

    Article  Google Scholar 

  • Zheng YF, Hoefs J (1993) Effects of mineral precipitation on the sulfur isotope composition of hydrothermal solutions. Chem Geol 105:259–269

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yong Chen and Can Jiang for providing assistance during the field investigations. This work was carried out, while W.L. was a visiting student at the University of Adelaide. We thank the staff at Adelaide Microscopy for assistance during the microanalytical work. Insightful comments from four anonymous reviews, Bernd Lehmann, Thomas Monecke, and Ruizhong Hu helped us improving this paper.

Funding

Financial support for this study was provided by the National “973” Program of China (2014CB440902) and the National Science Foundation of China (41372090 and 41573042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qing Xie.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests. The research reported here did not involve human participants or animals.

Additional information

Editorial handling: T. Monecke

Electronic supplementary material

ESM 1

(DOCX 19.8 kb)

ESM 2

(DOCX 19.6 kb)

ESM 3

(DOCX 19.2 kb)

ESM 4

(DOCX 19.8 kb)

ESM 5

(DOCX 22.1 kb)

ESM 6

(DOCX 19.2 kb)

ESM 7

(DOCX 86.8 kb)

ESM 8

(DOCX 82.9 kb)

ESM 9

(DOCX 19.5 kb)

ESM 10

(JPG 3.24 mb)

ESM 11

(JPG 2.62 mb)

ESM 12

(JPG 3.48 mb)

ESM 13

(JPG 5.79 mb)

ESM 14

(JPG 4.43 mb)

ESM 15

(DOCX 943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Cook, N.J., Xie, GQ. et al. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, South China. Miner Deposita 54, 591–610 (2019). https://doi.org/10.1007/s00126-018-0826-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0826-0

Keywords

Navigation