Skip to main content

Advertisement

Log in

Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

At the Hämmerlein skarn deposit, located in the western Erzgebirge (Germany), a major cassiterite-dominated Sn mineralization stage is spatially associated with a younger Zn-Cu-In sulfide mineralization stage. In this contribution, we provide the first detailed description of the Zn-Cu-In sulfide mineralization stage, based on field geological observations combined with detailed petrographic studies and electron probe microanalysis data. Indium-rich sulfide mineralization occurs as irregular, semi-massive lenses or as infill of short, discontinuous veinlets that crosscut the cassiterite-bearing skarn assemblage. Indium- and Cu-rich sphalerite and roquesite are found to be closely associated with In-bearing chalcopyrite. The highest In concentrations in sphalerite occur at the rims and along cracks of sphalerite grains. The distribution resembles diffusion profiles, suggesting that the In enrichment is due to an hydrothermal overprint that postdates the initial formation of both sphalerite and chalcopyrite. Textural relations illustrate that the diffusion fronts in sphalerite grains are thicker where they are in contact to anhedral masses of hematite and magnetite. Our observations suggest that In enrichment in sphalerite at the Hämmerlein skarn deposit is due to the decomposition of In-bearing chalcopyrite. The resultant release of Fe led to the formation of hematite and magnetite, whereas Cu and In were incorporated into sphalerite along grain boundaries and micro fractures. Incorporation into the sphalerite lattice took place by coupled substitution of Cu+ + In3+ ↔ 2Zn2+, suggesting that the concurrent availability of Cu and In may be an essential factor to enrich In in sphalerite in hydrothermal ore-forming environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong JT, McSwiggen P, Nielsen C (2013) A thermal field-emission electron probe microanalyzer for improved analytical spatial resolution. Microsc Anal 27(7):18–22

    Google Scholar 

  • Bachmann K, Frenzel M, Krause J, Gutzmer J (2017) Advanced identification and quantification of in-bearing minerals by scanning electron microscope-based image analysis. Microsc Microanal:1–11. https://doi.org/10.1017/S1431927617000460

  • Baker T, van Achterberg E, Ryan CG, Lang JR (2004) Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2):117. https://doi.org/10.1130/G19950.1

    Article  Google Scholar 

  • Barton PB Jr, Bethke PM (1987) Chalcopyrite disease in sphalerite: pathology and epidemiology. Am Mineral 72(5–6):451–467

    Google Scholar 

  • Baumann H, Mathes R, Jefimow W, Schubert E (1975) Geologischer Grundriß Stollensohle der Lagerstätte Hämmerlein–Tellerhäuser 1:10000. SDAG Wismut

  • Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke im Georg Thieme Verlag. New York, Stuttgart

    Google Scholar 

  • Bente K, Doering T (1993) Solid-state diffusion in sphalerites; an experimental verification of the “chalcopyrite disease”. Eur J Mineral 5(3):465–478

    Article  Google Scholar 

  • Bente K, Doering T (1995) Experimental studies on the solid state diffusion of Cu + In in ZnS and on “disease”, DIS (diffusion induced segregations), in sphalerite and their geological applications. Mineral Petrol 53(4):285–305. https://doi.org/10.1007/BF01160153

    Article  Google Scholar 

  • Buckley AN, Skinner WM, Harmer SL, Pring A, Lamb RN, Fan L-J, Yang Y-w (2007) Examination of the proposition that u(II) can be required for charge neutrality in a sulfide lattice—Cu in tetrahedrites and sphalerite. Can J Chem 85(10):767–781

    Article  Google Scholar 

  • Burke EAJ, Kieft C (1980) Roquesite and Cu-In-bearing sphalerite from Långban, Bergslagen, Sweden. Can Mineral 18(3):361–363

    Google Scholar 

  • Cherniak DJ (2010) Diffusion in carbonates, fluorite, sulfide minerals, and diamond. Rev Mineral Geochem 72(1):871. https://doi.org/10.2138/rmg.2010.72.19

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky LV, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73(16):4761–4791. https://doi.org/10.1016/j.gca.2009.05.045

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Williams T (2011a) The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy 108(3–4):226–228. https://doi.org/10.1016/j.hydromet.2011.04.003

    Article  Google Scholar 

  • Cook NJ, Sundblad K, Valkama M, Nygård R, Ciobanu CL, Danyushevsky LV (2011b) Indium mineralisation in A-type granites in southeastern Finland: insights into mineralogy and partitioning between coexisting minerals. Chem Geol 284(1–2):62–73. https://doi.org/10.1016/j.chemgeo.2011.02.006

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Brugger J, Etschmann B, Howard DL, de Jonge MD, Ryan C, Paterson D (2012) Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am Mineral 97(2–3):476–479. https://doi.org/10.2138/am.2012.4042

    Article  Google Scholar 

  • Dill HG, Garrido MM, Melcher F, Gomez MC, Weber B, Luna LI, Bahr A (2013) Sulfidic and non-sulfidic indium mineralization of the epithermal Au–Cu–Zn–Pb–Ag deposit San Roque (Provincia Rio Negro, SE Argentina)—with special reference to the “indium window” in zinc sulfide. Ore Geol Rev 51:103–128. https://doi.org/10.1016/j.oregeorev.2012.12.005

    Article  Google Scholar 

  • EU Commission (2014) Critical raw materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials, Bruessels

  • Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84(1–4):310–320

    Article  Google Scholar 

  • Förster H, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart

    Google Scholar 

  • Förster H, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40(11):1613–1645. https://doi.org/10.1093/petroj/40.11.1613

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond, Spec Publ 179(1):35–61. https://doi.org/10.1144/GSL.SP.2000.179.01.05

    Article  Google Scholar 

  • Frenzel M (2016) The distribution of gallium, germanium and indium in conventional and non-conventional resources—implications for global availability. Thesis, TU Bergakademie Freiberg

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol Rev 76:52–78. https://doi.org/10.1016/j.oregeorev.2015.12.017

    Article  Google Scholar 

  • Frenzel M, Mikolajczak C, Reuter MA, Gutzmer J (2017) Quantifying the relative availability of high-tech by-product metals—the cases of gallium, germanium and indium. Resour Policy 52:327–335. https://doi.org/10.1016/j.resourpol.2017.04.008

    Article  Google Scholar 

  • Goh SW, Buckley AN, Lamb RN, Rosenberg RA, Moran D (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim Cosmochim Acta 70(9):2210–2228. https://doi.org/10.1016/j.gca.2006.02.007

    Article  Google Scholar 

  • Hösel G (2003) Die polymetallische Skarnlagerstätte Pöhla-Globenstein, Bergbaumonographie. Bergbau in Sachsen, vol 8, Freiberg

  • Johan Z (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineral Petrol 39(3–4):211–229. https://doi.org/10.1007/BF01163036

    Article  Google Scholar 

  • Jonsson E, Hogdahl K, Majka J, Lindeberg T (2013) Roquesite and associated indium-bearing sulfides from a Paleoproterozoic carbonate-hosted mineralization: Lindbom’s prospect, Bergslagen, Sweden. Can Mineral 51(4):629–641. https://doi.org/10.3749/canmin.51.4.629

    Article  Google Scholar 

  • Kästner J (2016) Detailed investigations of skarn lithologies and tin mineralisation of the Hämmerlein seam (+590 m level) in the Pöhla-Tellerhäuser ore district (Erzgebirge, Germany). Master Thesis, TU Bergakademie Freiberg

  • Kern M, Möckel R, Krause J, Teichmann J, Gutzmer J (2017) Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy. Miner Eng. https://doi.org/10.1016/j.mineng.2017.06.006

  • Kieft K, Damman AH (1990) Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, west Bergslagen, Central Sweden. Mineral Mag 54:109–112

    Article  Google Scholar 

  • Kissin SA, Owens DAR (1989) The relatives of stannite in the light of new data. Can Mineral 27(4):673–688

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamtes 1:1–39

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24(1):298–329. https://doi.org/10.1016/j.gr.2013.03.001

    Article  Google Scholar 

  • Kröner A, Willner PA (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132(1):1–20. https://doi.org/10.1007/s004100050401

    Article  Google Scholar 

  • Leonhardt D (1999) Geologische Karte des Freistaates Sachsen 1:25000, Blatt 5543 Kurort Oberwiesenthal. Sächsisches Landesamt für Umwelt und Geologie, Dresden

    Google Scholar 

  • Leonhardt D (2009) Geologische Karte des Freistaates Sachsen 1:25000, Blatt 5442 Aue. Sächsisches Landesamt für Umwelt und Geologie, Dresden

    Google Scholar 

  • Leutwein F (1943) Vorkommen und Gewinnung von Indium. Forschungslaboratorium des Bergreviers Freiberg (Sächsisches Staatsarchiv, Bergarchiv Freiberg, 40030 Oberbergamt (neu) - staatliche Lagerstättenforschungsstelle, Nr. 1–0261), Freiberg, Germany

  • Li Y, Kawashima N, Li J, Chandra AP, Gerson AR (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interf Sci 197–198:1–32. https://doi.org/10.1016/j.cis.2013.03.004

    Article  Google Scholar 

  • Márquez-Zavalía MF, Galliski MÁ, Drábek M, Vymazalová A, Watanabe Y, Murakami H, Bernhardt H (2014) Ishiharaite, (Cu,Ga,Fe,In,Zn)S, a new mineral from the Capillitas Mine, northwestern Argentina. Can Mineral. https://doi.org/10.3749/canmin.1400064

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196(3):309–337. https://doi.org/10.1016/0040-1951(91)90328-P

    Article  Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Economic Geology 100th Anniversary Volume, 299–336

  • Murakami H, Ishihara S (2013) Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243. https://doi.org/10.1016/j.oregeorev.2013.01.010

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17(2–3):194–222. https://doi.org/10.1016/j.gr.2009.08.001

    Article  Google Scholar 

  • Nickel EH (1992) Solid solutions in mineral nomenclature. Mineral Petrol 46(1):49–53. https://doi.org/10.1007/BF01160701

    Article  Google Scholar 

  • Ohta E (1989) Occurrence and chemistry of indium-containing minerals from the Toyoha Mine, Hokkaido, Japan. Min Geol 39(218):355–372

    Google Scholar 

  • Osbahr I, Krause J, Bachmann K, Gutzmer J (2015) Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations. Microsc Microanal 21(5):1080–1095. https://doi.org/10.1017/S1431927615000719

    Article  Google Scholar 

  • Pattrick RAD, Dorling M, Polya DA (1993) TEM study of indium- and copper-bearing growth-banded sphalerite. Can Mineral 31(1):105–117

    Google Scholar 

  • Pattrick RAD, Mosselmans JFW, Charnock JM (1998) An X-ray absorption study of doped sphalerites. Eur J Mineral 10(2):239

    Article  Google Scholar 

  • Pavlova GG, Palessky SV, Borisenko AS, Vladimirov AG, Seifert T, Phan LA (2015) Indium in cassiterite and ores of tin deposits. Ore Geol Rev 66:99–113. https://doi.org/10.1016/j.oregeorev.2014.10.009

    Article  Google Scholar 

  • Pearce CI, Pattrick R, Vaughan DJ, Henderson C, van der Laan G (2006) Copper oxidation state in chalcopyrite: mixed Cu d9 and d10 characteristics. Geochim Cosmochim Acta 70(18):4635–4642. https://doi.org/10.1016/j.gca.2006.05.017

    Article  Google Scholar 

  • von Quadt A, Günther D (1999) Evolution of Cambrian eclogitic rocks in the Erzgebirge: a conventional and LA-ICP-MS U-Pb zircon and Sm-Nd study. Terra Nostra 99(1):164

    Google Scholar 

  • Reich F, Richter T (1863) Ueber das Indium. J Prakt Chem 90(1):172–176. https://doi.org/10.1002/prac.18630900122

    Article  Google Scholar 

  • Rötzler K, Plessen B (2010) The Erzgebirge: a pile of ultrahigh- to low-pressure nappes of Early Palaeozoic rocks and their Cadomian basement. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen, Schweizbart, Stuttgart, pp 253–270

  • Schmädicke E, Evans WB (1997) Garnet-bearing ultramafic rocks from the Erzgebirge, and their relation to other settings in the Bohemian Massif. Contrib Mineral Petrol 127(1):57–74. https://doi.org/10.1007/s004100050265

    Article  Google Scholar 

  • Schorr S, Wagner G (2005) Structure and phase relations of the Zn2x(CuIn)1−xS2 solid solution series. J Alloys Compd 396(1–2):202–207. https://doi.org/10.1016/j.jallcom.2004.12.018

    Article  Google Scholar 

  • Schuppan W, Hiller A (2012) Die Komplexlagerstätten Tellerhäuser und Hämmerlein: Uranbergbau und Zinnerkundung in der Grube Pöhla der SDAG Wismut. Bergbau in Sachsen, Band 17, Freiberg

  • Schwarz-Schampera U (2014) Indium. In: Gunn G (ed) Critical metals handbook. Wiley, Hoboken, pp 204–229

    Google Scholar 

  • Schwarz-Schampera U, Herzig PM (2000) Indium: geology, mineralogy and economics. Springer-Verlag, Berlin

    Google Scholar 

  • Seifert T (2008) Metallogeny and petrogenesis of lampophyres in the mid-European Variscides: post-Collosional magmatism and its relationship to late-Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press, Rotterdam

    Google Scholar 

  • Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28(1):1–31. https://doi.org/10.1016/j.oregeorev.2005.04.005

    Article  Google Scholar 

  • Seward TM, Henderson CMB, Charnock JM (2000) Indium(III) chloride complexing and solvation in hydrothermal solutions to 350°C: an EXAFS study. Chem Geol 167(1–2):117–127. https://doi.org/10.1016/S0009-2541(99)00204-1

    Article  Google Scholar 

  • Shimizu T, Morishita Y (2012) Petrography, chemistry, and near-infrared microthermometry of indium-bearing sphalerite from the Toyoha polymetallic deposit, Japan. Econ Geol 107(4):723–735. https://doi.org/10.2113/econgeo.107.4.723

    Article  Google Scholar 

  • Shimizu M, Kato A, Shiozawa T (1986) Sakuraiite; chemical composition and extent of (Zn, Fe)In-for-CuSn substitution. Can Mineral 24(2):405–409

    Google Scholar 

  • Sinclair WD, Kooiman GJA, Martin DA, Kjarsgaard IM (2006) Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol Rev 28(1):123–145. https://doi.org/10.1016/j.oregeorev.2003.03.001

    Article  Google Scholar 

  • Tichomirowa M, Leonhardt D (2010) New age determinations (Pb/Pb zircon evaporation, Rb/Sr) on the granites from Aue-Schwarzenberg and Eibenstock, western Erzgebirge, Germany. Z Geol Wiss 38(2–3):99–123

    Google Scholar 

  • Treliver Minerals Ltd (2015a) Tellerhäuser Project resource statement: press release from 13th March 2015. http://www.anglosaxony.com/assets/file/Press%20Release%20Mar%202015.pdf. Accessed 30 May 2016

  • Treliver Minerals Ltd (2015b) Westerzgebirge project Hammerlein-Tellerhauser: long Section through Adit. http://www.anglosaxony.com/projects/germany/tellerhauser. Accessed 30 May 2016

  • Valkama M, Sundblad K, Cook NJ, Ivashchenko VI (2016) Geochemistry and petrology of the indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia. Mineral Deposita 51(6):823–839. https://doi.org/10.1007/s00126-016-0641-4

    Article  Google Scholar 

  • Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28(1):57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nigel Cook and Erik Jonsson for their constructive comments that improved a former version of this manuscript significantly. H. Albert Gilg and Bernd Lehmann are thanked for the editorial handling. We sincerely thank Marco Roscher and Lars Starke (Saxore Bergbau GmbH) for the support with the sample collection; Frank Weißflog and the Besucherbergwerk Zinnkammern Pöhla e. V. for access to the underground mine; Max Frenzel, Tom Járóka, and Reinhard Kleeberg for insightful discussions; and Andreas Bartzsch, Roland Würkert, and Michael Stoll for sample preparation. The geographic map of Germany is based on data generated with generic mapping tools, GMT 5 (https://www.soest.hawaii.edu/gmt/).

Funding

This work was funded by the Biohydrometallurgical Center for Strategic Elements (BHMZ) of the Dr. Erich-Krüger-Foundation, Technische Universität Bergakademie Freiberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias E. Bauer.

Additional information

Editorial handling: A. Gilg

Electronic supplementary material

ESM 1

(XLSX 145 kb).

ESM 2

EPMA element distribution maps of a large sphalerite IIc grain (Sp IIc) that is surrounded by chalcopyrite (Ccp) and Fe oxides (magnetite and hematite); resolution 1 pixel ≙ 3 µm. a Zn EDS signal with position of a high resolution beam scan (2-6_10b Map 3-a) in e–g. b Fe Kα X-ray signal. c In Lα X-ray signal. d Cu Kα X-ray signal. e Cu Lα X-ray signal, resolution 1 pixel ≙ 170 nm. f In Lα X-ray signal. g Fe Lα X-ray signal (GIF 748 kb).

High Resolution Image (TIFF 4.25 MB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M.E., Seifert, T., Burisch, M. et al. Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite. Miner Deposita 54, 175–192 (2019). https://doi.org/10.1007/s00126-017-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0773-1

Keywords

Navigation